
BBR v2

A Model-based Congestion Control
Neal Cardwell, Yuchung Cheng,

Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev,

Priyaranjan Jha, Yousuk Seung, Matt Mathis

Van Jacobson

https://groups.google.com/d/forum/bbr-dev

1IETF 104: Prague, Mar 2019

https://groups.google.com/d/forum/bbr-dev

- BBR v2 research update
- Improvements between v1 and v2
- Status and recent results
- Overview of current BBR v2 design

- Deployment status and links for further info
- Conclusion

2

Outline

Issues with initial (v1) version of BBR

3

- Low throughput for Reno/CUBIC flows sharing a bottleneck with bulk BBR flows
- Loss-agnostic; high packet loss rates if bottleneck queue < 1.5*BDP
- ECN-agnostic
- Low throughput for paths with high degrees of aggregation (e.g. wifi)
- Throughput variation due to low cwnd in PROBE_RTT

BBR v2 tackles all of these...

BBR v2 improvements: coexistence with Reno/CUBIC

- BBR v1: low throughput for Reno/CUBIC flows sharing some paths
- BBR v2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102]

4

4 CUBIC, 1 BBR v2, 50M, 40ms,
buffer = 1xBDP
start time {0, 2, 4, 6, 8} secs

bw retrans

CUBIC 1 10.5 M 0.3%

CUBIC 2 9.1 M 0.1%

CUBIC 3 10.4 M 0.1%

CUBIC 4 8.7 M 0.1%

BBR v2 9.3 M 0.1%

https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00

BBR v2 improvements: using packet loss as a signal

- BBR v1: agnostic to loss, susceptible to high loss rates if bottleneck queue < 1.5*BDP
- BBR v2: uses loss as an explicit signal, with an explicit target loss rate ceiling [IETF 102]

5

bw retrans

BBR 1 24.4 M 2.7%

BBR 2 16.2 M 0.8%

BBR 3 15.0 M 0.8%

BBR 4 11.0 M 0.7%

BBR 5 14.4 M 0.8%

BBR 6 15.2 M 0.7%

6 BBR v2, t={0, 2, 4, 6, 8, 10}, 100M, 100ms,
buffer = 5% of BDP (41 packets);

https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00

BBR v2 improvements: using ECN as a signal

- BBR v1: does not use ECN
- BBR v2: uses DCTCP-style ECN, if available, to help keep queues short

6

20 BBR v2, starting each 100ms, 1G, 1ms,
Linux codel with ECN ce_threshold at
242us sojourn time.
0 retransmits
flow throughput = [46.8 .. 51.1] Mbps

RTT (ms)

50% 1.278

95% 1.499

max 2.854

BBR v2 improvements: high throughput for wifi

- BBR v1: low throughput with aggregation > 1*BDP of data or ACKS (e.g. wifi LAN)
- BBR v2: estimates recent degree of aggregation to match CUBIC throughput [IETF 101]

7

- On YouTube, BBR v2 matches
CUBIC throughput for users on wifi
links

- In controlled tests, BBR v2 utilizes
wifi links well (at right, path is
POP->Internet->DOCSIS->wifi):

- Aggregation modeling code
available in QUIC and now in
Linux 5.1 [commit]

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/net/ipv4/tcp_bbr.c?id=78dc70ebaa38aa303274e333be6c98eef87619e2

BBR v2 improvements: reducing throughput variation

- BBR v1: cuts cwnd to 4 packets if entering PROBE_RTT
- BBR v2: cuts cwnd to 50% of BDP if entering PROBE_RTT

8

4*MSS

~BDP

in
fli

gh
t

time

~BDP

in
fli

gh
t

time

BBR v1 BBR v2

0.5 * BDP

What’s new in BBR v2: a summary

9

CUBIC BBR v1 BBR v2

Model parameters to the
state machine

N/A Throughput, RTT Throughput, RTT,
max aggregation,

max inflight

Loss Reduce cwnd by 30%
on window with any loss

N/A Explicit loss rate target

ECN RFC3168
(Classic ECN)

N/A DCTCP-inspired ECN

Startup Slow-start until
RTT rises (Hystart) or

any loss

Slow-start until
tput plateaus

Slow-start until
tput plateaus or

ECN/loss rate > target

https://tools.ietf.org/html/rfc3168

BBR v2: status

Testing BBR v2 with YouTube TCP traffic

- Kernel with initial version of TCP BBR v2 on all YouTube machines
- Running experiments using BBR v2 variants on small fraction of global YouTube traffic
- Results so far:

- Reduced queuing delays: RTTs lower than BBR v1 and CUBIC
- Reduced packet loss: loss rates closer to CUBIC than BBR v1
- Throughput matches CUBIC

- Continuing to iterate using production and lab tests
- Preparing for open source release

10

Confidential + ProprietaryConfidential + Proprietary

Overview of BBR v2 design...

12

Network Path
Model

Input: measurements from network traffic

 State Machine Sending Engine

rate,

Sender data

Sent
Data

Packets

quantum,
...

 volume,

Model-based Congestion Control Algorithm Output:
Control
parameters

throughput, delay, loss, ECN, ...

BBR congestion control: the big picture

BBR v2: the network path model

13time

se
qu

en
ce

send

ACK

min_rtt

max_inflight

max_aggregation
max_bw

max_bw: bottleneck bandwidth available to this flow
min_rtt: round-trip propagation delay
max_inflight: max inflight data, based on loss/ECN
max_aggregtion: max measured aggregation level

BBR v2: the network path model

max_bw: bottleneck bandwidth available to this flow
min_rtt: round-trip propagation delay
max_inflight: max inflight data based on loss/ECN
max_aggregtion: max measured aggregation level

These max bw and inflight parameters can be highly dynamic
Based on traffic levels

Thus BBR v2 maintains both short-term and long-term estimates for each
Analogous to CUBIC's short-term (ssthresh) and long-term (W_max) parameters

BBR v2: model adaptation

BBR v2 model estimates (bw, inflight) over the short term and long term

- Goals:
- High throughput, even when experiencing moderate random loss
- Low queue pressure (low queuing delays, low packet loss rates)

- Mostly adapt quickly to maintain flow balance and leaves headroom
- {bw,inflight}_lo: short-term bounds using latest delivery/loss/ECN signals
- Intuition: what is the (bw,inflight) delivery process the flow is measuring now?

- Periodically probe beyond flow balance to probe robustly for higher bw, inflight
- {bw,inflight}_hi: long-term max measured before signals of congestion (loss, ECN)
- Intuition: what is the max (bw, inflight) observed to be consistent with the network's

desired loss rate and ECN mark rate SLO (service level objective)? 15

Confidential + Proprietary

How to adapt to a loss signal, given the ambiguities?

- Consider a shallow-buffered high-speed WAN with RTT=100ms
- An app does occasional 2000-pkt writes
- Available bw drops from 12 Gbit/sec -> 12 Mbit/sec (from 1000 pkt/ms to 1 pkt/ms)

- On first write after bw drops, there will likely be very high loss
- Ambiguity: low tput may be due to lack of data, bursty traffic, or sustained cut in bw

da
ta

 s
eq

ue
nc

e

time

tx 2000 pkts over 2 ms

1 pkt ACKed each ms

2 pkts ACKed

2*999 pkts dropped

16

BBR v2 adaptation: motivating example (part 1)

Confidential + Proprietary

To fully utilize bottlenecks, adapt both max sending rate and max inflight

- In this example, should we simply cut cwnd to 2, due to 2 pkts being delivered?
- No; if we pace at available bandwidth, can deliver a vastly higher volume of data...

- If the pattern in this example happens repeatedly, probably we should:
- Gradually reduce sending rate to 1 pkt/ms (12 Mbit/sec)
- Converge to a target inflight at new BDP of 1 pkt/ms * 100ms = 100 pkt (not 2 pkts)

tx 100 pkts per 100ms

1 pkt sent and ACKed each ms; 0 pkts dropped
17

BBR v2 adaptation: motivating example (part 2)
da

ta
 s

eq
ue

nc
e

time

Confidential + Proprietary

Strategy: gradually adapt to measured delivery process (bw, inflight) in the path

- Applies generally:
- In fast recovery or RTO recovery
- Whether application-limited or not

- Maintain 1-round-trip max of delivered bandwidth (rs->delivered/rs->interval_us)
- bw_latest = windowed_max(delivered_bw_sample, 1 round trip)

- Maintain 1-round-trip max of delivered volume of data (rs->delivered):
- inflight_latest = windowed_max(delivered_data_sample, 1 round trip)

- Upon ACK at end of each round that had a newly-marked loss (β = 0.3):

bw_lo = max(bw_latest, (1 - β) * bw_lo)

inflight_lo = max(inflight_latest, (1 - β) * inflight_lo)

18

BBR v2: short-term model adaptation: algorithm

time

 Startup

 Drain

 ProbeBW

 ProbeRTT

State machine uses 2-phase sequential probing of bw, RTT

- 1: raise inflight to probe BtlBw, get high throughput
- 2: lower inflight to probe RTprop, get low delay
- At two different time scales: warm-up, steady state...
- Warm-up:

- Startup: ramp up quickly until we estimate pipe is full
- Drain: drain the estimated queue from the bottleneck

- Steady-state:
- ProbeBW: cycle pacing rate to vary inflight, probe BW
- ProbeRTT: if needed, a coordinated dip to probe RTT

BBR: the state machine

inflight
Est. BDP

19

Confidential + Proprietary

BBR v2 flow life cycle
in

fli
gh

t

time

20

BBR v2 has a state machine similar to v1, at a high level

- But many of the mechanism details are new...

(bold = new in v2)

Confidential + Proprietary

BBR v2 flow life cycle

STARTUP: rapidly discover available bandwidth

- Doubles sending rate and inflight
- Sets inflight_hi to estimated max safe in-flight volume if:

- Filtered loss rate is too high
- Exits when either:

- Bandwidth samples plateau
- inflight_hi is set

STARTUP

21

in
fli

gh
t

time

Confidential + Proprietary

DRAIN

BBR v2 flow life cycle

DRAIN: empty the queue and leave unused headroom

- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= min(estimated BDP, inflight_hi - headroom)

inflight_hi

22

in
fli

gh
t

time

BDPunused headroom

Confidential + Proprietary

inflight_hi

inflight_lo

PROBE_BW: CRUISE

BBR v2 flow life cycle

PROBE_BW "CRUISE" phase: adapt to maintain low queues

- Cruising operating point respecting several constraints
- Start inflight at estimated BDP

- inflight <= estimated_bdp
- Leave headroom if last probe saw a hard ceiling at inflight_hi:

- inflight <= (1 - headroom) * inflight_hi (headroom=0.15)
- Per round trip, adapt {bw,inflight}_lo using loss, ECN signals

23

in
fli

gh
t

time

BDPunused headroom

Confidential + Proprietary

PROBE_BW: REFILL

BBR v2 flow life cycle

PROBE_BW "REFILL" phase: refill the pipe

- Behavior: Send at estimated bw for one packet-timed round trip
- Goal: to try to fill the pipe, but not queue (yet)
- Rationale: because sending faster than the available bw builds a queue

- Even if the pipe is not full yet
- If the buffer is shallow super-unity can cause loss very quickly
- If we do not fill the pipe before we cause this loss, then our model will

grossly underestimate

inflight_hi

24

in
fli

gh
t

time

BDP

Confidential + Proprietary

PROBE_BW: UP

BBR v2 flow life cycle

PROBE_BW "UP" phase: raise in-flight data to probe for bandwidth

- Probe for bandwidth and volumetric capacity
- Grow beyond inflight_hi slowly at first, then rapidly

- inflight_target = inflight_hi + inflight_probe
- inflight_probe grows exponentially per round: 1, 2, 4, 8... packets

- Set inflight_hi ceiling to estimated max safe in-flight volume if:
- Loss rate is too high (above loss SLO threshold)
- ECN mark rate is too high (above ECN SLO threshold)

- Terminate probing upon any of:
- Estimated queue is high enough (inflight > 1.25 * estimated_bdp)
- Set inflight_hi ceiling based on loss or ECN

inflight_hi

25

in
fli

gh
t

time

BDP

Confidential + Proprietary

PROBE_BW: DOWN

BBR v2 flow life cycle

PROBE_BW "DOWN" phase: empty the queue and leave unused headroom

- Maintains low pacing rate to quickly drain excess in-flight
- Until inflight <= min(estimated BDP, inflight_hi - headroom)

(PROBE_BW "DOWN" phase may ultimately replace DRAIN phase)

BDP

26

in
fli

gh
t

time

inflight_hi

Confidential + Proprietary

To summarize, let's review the macroscopic behavior of Reno, CUBIC, BBR v2...

27

Comparing congestion control algorithms...

Confidential + Proprietary

fast recovery

Reno: brittle loss response, non-scalable growth

Non-scalable linear growth
Needs 1000x more time to reach 1000x higher bw

Brittle; to fully utilize a 10G, 100ms path, needs:
>1 hour between any losses
loss rate <= .0000000002 (2.0e-10)

congestion avoidance

slow startda
ta

 in
 fl

ig
ht

time 28

Reno

(linear)
(headroom)

ssthresh

https://tools.ietf.org/html/rfc8312#section-5.2

Confidential + Proprietary

slow start

ssthresh

W_max

queue full (no headroom)

(cubic)
da

ta
 in

 fl
ig

ht

time 29

CUBIC

fast recovery
congestion avoidance

(cubic)

CUBIC: brittle loss response, non-scalable growth

Non-scalable cubic growth
Needs 10x more time to reach 1000x higher bw

Brittle; to fully utilize a 10G, 100ms path, needs:
>40 secs between any losses
loss rate <=.000000029 (2.9e-8)

https://tools.ietf.org/html/rfc8312#section-5.2

Confidential + Proprietary

(headroom)

STARTUP

inflight_hi

inflight_lo

(exponential)

da
ta

 in
 fl

ig
ht

time

PROBE_BW

30

BBR v2

BBR v2: bounded loss tolerance, scalable growth

Aims to reduce time with queue full (leave headroom)
Scalable exponential growth; uses new bw in O(log(BDP))
To fully utilize a 10G, 100ms path:

Can have up to loss_thresh loss in every round
[Shallow buffer case depicted; no loss with deeper buffers]

BBR status: deployment, release, documentation

- BBR v1 used for TCP/QUIC on Google.com/YouTube, Google WAN backbone
- Better performance than CUBIC for web, video, RPC traffic

- BBR v2 running in experiments for a small percentage of YouTube users
- BBR v1 Code available as open source in Linux TCP (dual GPLv2/BSD), QUIC (BSD)
- Active BBR work under way for BBR in FreeBSD TCP @ NetFlix
- BBR v1 Internet Drafts are out and ready for review/comments:

- Delivery rate estimation: draft-cheng-iccrg-delivery-rate-estimation
- BBR congestion control: draft-cardwell-iccrg-bbr-congestion-control

- IETF presentations: 97 | 98 | 99 | 100 | 101 | 102
- BBR v1 Overview in Feb 2017 CACM

31

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-congestion-control-00.pdf
https://www.ietf.org/proceedings/99/slides/slides-99-iccrg-iccrg-presentation-2-00.pdf
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

Conclusion

Actively working on BBR v2

- Linux TCP and QUIC at Google; current focus areas:
- Reducing queue pressure using packet loss and ECN signals
- Coexistence with loss-based congestion control

- Work under way for BBR in FreeBSD TCP @ NetFlix
- Always happy to see patches, hear test results, or look at packet traces...

32

 Q & A

https://groups.google.com/d/forum/bbr-dev

Internet Drafts, paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Nandita Dukkipati, C. Stephen Gunn, Kevin Yang,
Jana Iyengar, Pawel Jurczyk, Biren Roy, David Wetherall, Amin Vahdat, Leonidas
Kontothanassis, and {YouTube, google.com, SRE, BWE} teams.

33

https://groups.google.com/d/forum/bbr-dev

Backup slides...

34

BBR v2 improvements: coexistence with Reno/CUBIC

- BBR v1: low throughput for Reno/CUBIC flows sharing some paths
- BBR v2: adapts bandwidth probing for better coexistence with Reno/CUBIC [IETF 102]

35

2 CUBIC, 2 BBR v2, 50M, 40ms,
buffer = 1xBDP
start time {0, 2, 4, 6} secs

bw retrans

CUBIC 1 13.6 M 0.4%

CUBIC 2 12.5 M 0.1%

BBR 1 12.4 M 0.3%

BBR 2 9.8 M 0.2%

https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00

BBR v2 design principles in a nutshell

- Leave headroom: leave space for entering flows to grab
- React quickly: using loss/ECN, adapt to delivery process now to maintain flow balance
- Don't overreact: don't do a multiplicative decrease on every round trip with loss/ECN
- Probe deferentially: probe on a time scale to allow coexistence with Reno/CUBIC
- Probe robustly: try to probe beyond estimated max bw, max volume before we cut est.
- Avoid overshooting: start probing at an inflight measured to be tolerable
- Grow scalably: start probing at 1 extra packet; grow exponentially to use free capacity

(bold = new in v2)

36

