

# Intelligent SFP Bi-Directional Transceiver Module for Gigabit Ethernet and Fast Ethernet



#### **FEATURES**

- RoHS compliant
- Digital Diagnostic SFF-8472 MSA compliant
- Simplex SC connector with 1310nm Transmitter and 1550nm Receiver
- Single + 3.3V power supply and TTL logic interface
- Bellcore GR-468 compliant
- Laser class 1 product which comply with the requirements of IEC 60825-1 and IEC 60825-2

#### **Description**

The SPBD-1250xxxx series are hot pluggable 3.3V Small-Form-Factor (SFP) Bi-Directional transceiver module designed expressly for high-speed communication applications that require rates of up to 1250Mbit/sec. It is compliant with the Gigabit Ethernet and Fast Ethernet standards, as well as the SFP Multisource Agreement (MSA).

The SPBD-1250xxxx transceivers provide with the SC receptacle that is compatible with the industry standard SC connector. The transceiver is also compatible with industry standard RFT connector and cage. It also includes a LOS (Loss Of Signal) circuit that provides a TTL logic-high output when an unusable optical signal level is detected.

The module includes 1310nm un-cool FP laser, InGaAs PIN, Preamplifer and WDM filter in a high-integrated optical assembly for high-density system application. The SFP Bi-Directional transceiver can upgrade transmission capacity very convenient without installing new fibers.

#### **Application**

- IEEE 802.3ah 1000BASE-BX
- Gigabit Ethernet
- FTTx WDM Broadband Access
- Switch to switch/backbone interface

#### **Performance**

 SPBD-1250E4Q2R data link up to 10km in 9/125um single mode fiber.

> Revision: S0 12/20/2007 www.deltaww.com



## 1. Absolute Maximum Ratings

| Parameter                  | Symbol | Min. | Тур. | Max.    | Unit | Note |
|----------------------------|--------|------|------|---------|------|------|
| Storage Temperature        | Ts     | -40  |      | 85      | °C   |      |
| Storage Ambient Humidity   | HA     | 5    |      | 95      | %    |      |
| Power Supply Voltage       | Vcc    | 0    |      | 5       | V    |      |
| Signal Input Voltage       |        | -0.3 |      | Vcc+0.3 | V    |      |
| Optical Input Power (Peak) |        |      |      | +3      | dBm  |      |

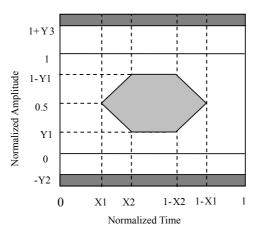
## 2. Recommended Operating Conditions

| Parameter                    | Symbol | Min.            | Тур. | Max.            | Unit  | Note           |
|------------------------------|--------|-----------------|------|-----------------|-------|----------------|
| Operating Case Temperature   | Tc     | -5              |      | 75              | °C    | Note (1)       |
| Ambient Humidity             | HA     | 5               |      | 85              | %     | Non-condensing |
| Power Supply Voltage         | Vcc    | 3.13            | 3.3  | 3.47            | V     |                |
| Power Supply Current         | Icc    |                 |      | 300             | mA    |                |
| Power Supply Noise Rejection |        |                 |      | 100             | mVp-p | 100Hz to 1MHz  |
| Data Rate                    |        | 1250<br>-100ppm | 1250 | 1250<br>+100ppm | Mbps  |                |
| Transmission Distance        |        |                 |      | 10              | km    |                |

Note (1). Measured on topside of case front center.

# 3. Specification of Transmitter

| Parameter                     | Symbol                         | Min.                                 | Тур.        | Max. | Unit  | Note     |
|-------------------------------|--------------------------------|--------------------------------------|-------------|------|-------|----------|
| Average Launched Power        | Po                             | -9                                   | -6          | -3   | dBm   | Note (1) |
| Optical Extinction Ratio      | ER                             | 9                                    |             |      | dB    |          |
| Center Wavelength             | λ <sub>C</sub>                 | 1270                                 | 1310        | 1355 | nm    | FP Laser |
| Spectrum Width (RMS)          | σ                              |                                      |             | 3    | nm    |          |
| Transmitter OFF Output Power  | P <sub>Off</sub>               |                                      |             | -45  | dBm   |          |
| Optical Rise/Fall Time        | t <sub>r</sub> /t <sub>f</sub> |                                      |             | 260  | ps    | Note (2) |
| Deterministic Jitter          | DJ                             |                                      |             | 80   | ps    |          |
| Total Jitter                  | TJ                             |                                      |             | 227  | ps    | Note (3) |
| Relative Intensity Noise      | RIN <sub>12</sub> OMA          |                                      |             | -113 | dB/Hz |          |
| Optical Return Loss Tolerance | ORLT                           | ORLT                                 |             | 12   | dB    |          |
| Transmitter Reflectance       |                                |                                      |             | -6   | dB    |          |
| Output Eye Mask               |                                | Compliant with IEEE 802.3ah standard |             |      |       | Note (4) |
| <i>{X1,X2,Y1,Y2,Y3}</i>       | {0.22                          | ,0.375,0.20                          | 0,0.20,0.30 | )}   |       | Note (4) |


Note (1). Launched power (avg.) is power coupled into a single mode fiber.

Note (2). These are unfiltered 20-80% values.

Note (3). Measure at 2<sup>7</sup>-1 NRZ PRBS pattern.



Note (4). Eye Mask definition



## 4. Specification of Receiver

| Parameter                         | Symbol                         | Min. | Тур. | Max. | Unit | Note     |
|-----------------------------------|--------------------------------|------|------|------|------|----------|
| Input Optical Wavelength          | λın                            | 1480 |      | 1600 | nm   | PIN-PD   |
| Receiver Sensitivity              | P <sub>IN</sub>                |      |      | -23  | dBm  | Note (1) |
| Input Saturation Power (Overload) | P <sub>SAT</sub>               | -3   |      |      | dBm  |          |
| LOS-Deassert Power                | $P_A$                          | -    |      | -24  | dBm  |          |
| LOS-Assert Power                  | P <sub>D</sub>                 | -44  |      |      | dBm  | Note (2) |
| LOS Hysteresis                    | $P_A-P_D$                      | 0.5  | 2    | 6    | dB   |          |
| Receiver Reflectance              |                                |      |      | -12  | dB   | Note (3) |
| Deterministic Jitter              | DJ                             |      |      | 170  | ps   |          |
| Total Jitter                      | TJ                             |      |      | 266  | ps   |          |
| Output Data Rise/Fall time        | t <sub>r</sub> /t <sub>f</sub> |      |      | 260  | ps   | Note (4) |

Note (1). Measured with 1550nm, ER=9dB; BER =<10<sup>-12</sup>@PRBS=2<sup>7</sup>-1 NRZ

Note (2). When LOS asserted, the data output is Low-level (fixed)

Note (3). When the terminal is viewed from the optical path, the reflection toward the optical path of the optical signal with a central wavelength of 1550nm transmitted to terminal.

Note (4). These are 20%~80% values

Revision: S0 12/20/2007



#### 5. Electrical Interface Characteristics

| Parameter                          | Symbol                | Min. | Тур. | Max.                 | Unit       | Note     |
|------------------------------------|-----------------------|------|------|----------------------|------------|----------|
| Transmitter                        |                       |      |      |                      |            |          |
| Total Supply Current               | I <sub>cc</sub>       |      |      | Α                    | mA         | Note (1) |
| Differential Data Input Swing      | VDT                   | 500  |      | 2400                 | $mV_{p-p}$ |          |
| Differential line input Impedance  | R <sub>IN</sub>       | 80   | 100  | 120                  | Ohm        |          |
| Transmitter Disable Input-High     | $V_{DISH}$            | 2    |      | $V_{CC}$             | V          | Note (2) |
| Transmitter Disable Input-Low      | $V_{DISL}$            | 0    |      | 0.8                  | V          |          |
| Transmitter Fault Output-High      | $V_{TXFH}$            | 2    |      | V <sub>CC</sub> +0.3 | V          |          |
| Transmitter Fault Output-Low       | $V_{TXFL}$            | 0    |      | 0.8                  | V          |          |
| Transmitter Fault Pull up Resistor | R <sub>TX_FAULT</sub> | 4.7  |      | 10                   | kΩ         | Note (3) |
| Receiver                           |                       |      |      |                      |            |          |
| Total Supply Current               | I <sub>cc</sub>       |      |      | В                    | mA         | Note (1) |
| Differential Data Output Swing     | Vdr                   | 400  |      | 1200                 | $mV_{p-p}$ | Note (4) |
| LOS Output Voltage-High            | $V_{LOSH}$            | 2    |      | V <sub>CC</sub> +0.3 | V          |          |
| LOS Output Voltage-Low             | $V_{LOSL}$            | 0    |      | 8.0                  | V          |          |
| Receiver LOS Load                  | R <sub>RXLOS</sub>    | 4.7  |      | 10                   | kΩ         | Note (3) |

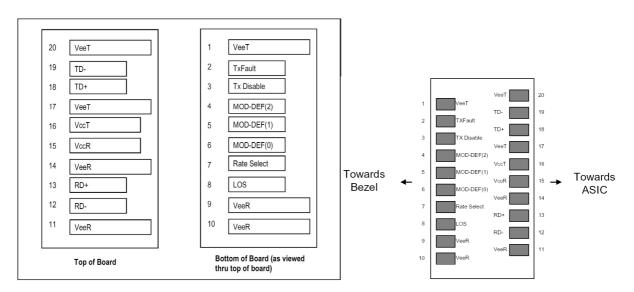
Note (1). A (TX)+ B (RX) = 300mA

(A: Not include termination circuit; B: using a resister of  $150\Omega$  between Data-output and ground)

Note (2). There is an internal 4.7 to  $10k\Omega$  pull-up resistor to VccT.

Note (3). Pull up to  $V_{CC}$  on host Board.

Note (4). Internally AC coupled output, but requires a 1000hm differential termination at or internal to Serializer/ Deserializer.


## **6. Digital Diagnostic Monitor Accuracy**

| Parameter                        | Accuracy | Unit | Calibration | Note                            |
|----------------------------------|----------|------|-------------|---------------------------------|
| Transceiver Internal Temperature | ± 3°℃    | °C   | Internal    | Tc=-5~+75°C                     |
| Power Supply Internal Voltage    | ± 3%     | V    | Internal    | Vcc=3.3V±5%                     |
| TX Bias Current                  | ± 10%    | mA   | Internal    | Specified by nominal bias value |
| TX Optical Power                 | ± 3dB    | dBm  | Internal    | -9 to -3dBm                     |
| RX Optical Power                 | ± 3dB    | dBm  | Internal    | -23 to -3dBm                    |

Note. Temperature and Voltage is measured internal to the transceiver.



#### 7. Pin Description



SFP Transceiver Electrical Pad Layout

Host Board Connector Pad Layout

#### **Pin Function Definitions**

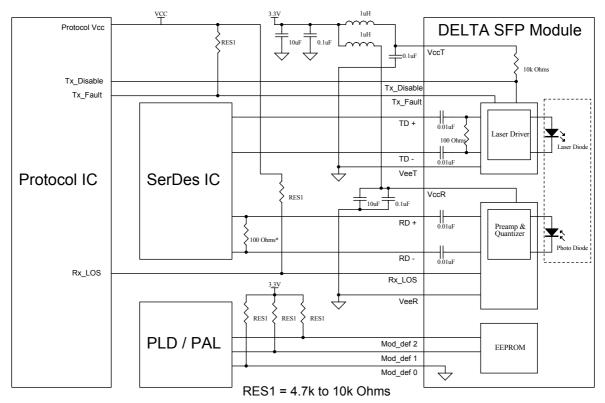
| Pin Num. | Name        | Function                     | Plug Seq. | Notes                                |
|----------|-------------|------------------------------|-----------|--------------------------------------|
| 1        | VeeT        | Transmitter Ground           | 1         | Note (1)                             |
| 2        | TX Fault    | Transmitter Fault Indication | 3         | Note (2)                             |
| 3        | TX Disable  | Transmitter Disable          | 3         | Note (3)                             |
| 4        | MOD-DEF2    | Module Definition 2          | 3         | Note (4), 2 wire serial ID interface |
| 5        | MOD-DEF1    | Module Definition 1          | 3         | Note (4), 2 wire serial ID interface |
| 6        | MOD-DEF0    | Module Definition 0          | 3         | Note (4), Grounded in Module         |
| 7        | Rate Select | Not Connect                  | 3         | Function not available               |
| 8        | LOS         | Loss of Signal               | 3         | Note (5)                             |
| 9        | VeeR        | Receiver Ground              | 1         |                                      |
| 10       | VeeR        | Receiver Ground              | 1         |                                      |
| 11       | VeeR        | Receiver Ground              | 1         |                                      |
| 12       | RD-         | Inv. Received Data Out       | 3         | Note (6)                             |
| 13       | RD+         | Received Data Out            | 3         | Note (6)                             |
| 14       | VeeR        | Receiver Ground              | 1         |                                      |
| 15       | VccR        | Receiver Power               | 2         | Note (7)                             |
| 16       | VccT        | Transmitter Power            | 2         | Note (7)                             |
| 17       | VeeT        | Transmitter Ground           | 1         |                                      |
| 18       | TD+         | Transmit Data In             | 3         | Note (8)                             |
| 19       | TD-         | Inv. Transmit Data In        | 3         | Note (8)                             |
| 20       | VeeT        | Transmitter Ground           | 1         |                                      |

Plug Seq.: Pin engagement sequence during hot plugging.



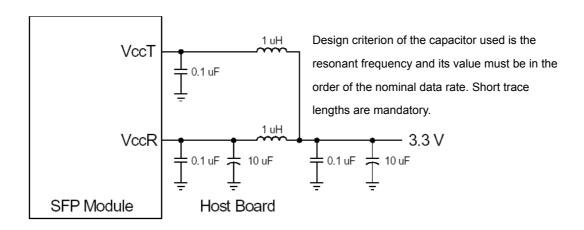
#### Notes:

- 1) Circuit ground is internally isolated from frame (chassis) ground. Tx GND and Rx GND may be internally isolated within the TRx module.
- 2) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K~10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT+0.3V. The output indicates Low when the transmitter is operating normally, and High with a laser fault including laser end-of-life. In the low state, the output will be pulled to less than 0.8V.
- 3) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7 10 \text{ K }\Omega$  resistor. Its states are:


Low (0 - 0.8V): Transmitter on (>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 4) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K 10KΩresistor on the host board. The pull-up voltage shall be VccT or VccR.
  - Mod-Def 0 is grounded by the module to indicate that the module is present
  - Mod-Def 1 is the clock line of two-wire serial interface for serial ID
  - Mod-Def 2 is the data line of two-wire serial interface for serial ID
- 5) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor. Pull up voltage between 2.0V and VccR+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity. Low indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled  $100\Omega$  differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Recommended host board power supply filtering is shown below page. Inductors with DC resistance of less than 1 Ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.
- 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 2400 mV (250 1200 mV single-ended), though it is recommended that values between 500 and 1200 mV differential (250 600 mV single-ended) be used for best EMI performance.

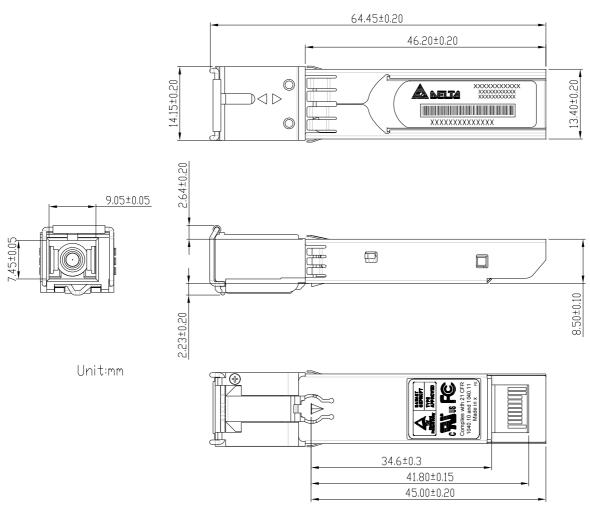



## 8. Recommend Interface Circuit

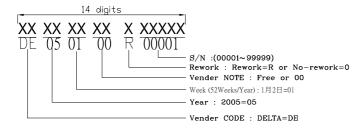


\* Depands on SerDes IC used

#### SFP Host Board Schematic



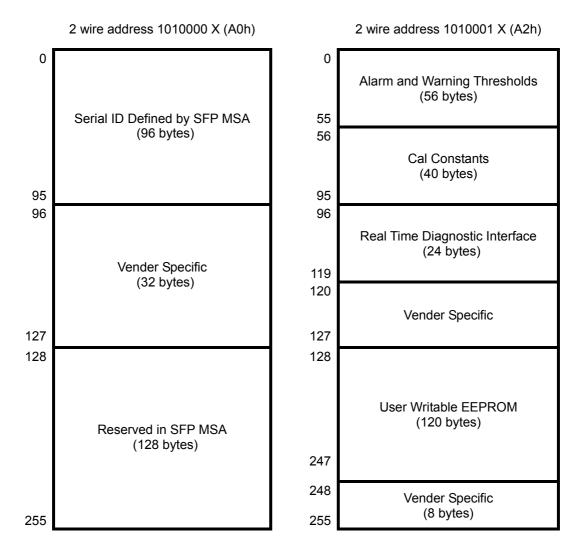

#### Recommended Host Board Supply Filtering Network




#### 9. Outline Dimensions

| Tx/Rx Wavelength | Latch Color Identifier |
|------------------|------------------------|
| 1310nm/1550nm    | Black                  |
| 1550nm/1310nm    | Yellow                 |
| 1310nm/1490nm    | Blue                   |
| 1490nm/1310nm    | Violet                 |










#### 10. Enhanced Digital Diagnostic Interface

The memory map in the following describes an extension to the memory map defined in SFF-8472. The enhanced interface uses the two wire serial bus address 1010001X(A2h) to provide diagnostic information about the module's present operating conditions.





# **EEPROM Serial ID Memory Contents (2-Wire Address A0h)**

| Address        | Name of Field     | Value (Hex) | Remark                                                                  |
|----------------|-------------------|-------------|-------------------------------------------------------------------------|
|                |                   |             | e ID Fields                                                             |
| 00             | Identifier        | 03          | SFP transceiver                                                         |
| 01             | Ext. Identifier   | 04          | Serial ID module supported                                              |
| 02             | Connector         | 01          | SC connector                                                            |
| 03             |                   | 00          | Infiniband Compliance Codes                                             |
| 04-05          | Transceiver code  | 00 00       | Transceiver codes                                                       |
| 06             | Transceiver code  | 40          | Ethernet Base-BX10 compliance                                           |
| 07-10          | Transceiver code  | 00 00 00 00 | Transceiver codes                                                       |
| 11             | Encoding          | 01          | Compatible with 8B10B GE encoding code                                  |
| 12             | BR, Nominal       | 0D          | Nominal 1300 Mbps (actual GE 1250Mbps)                                  |
| 13             | Reserved          | 00          | Reserved for SFF-8079                                                   |
| 14             | 110001100         | 0A          | 9/125 im fiber, units of km (10km)                                      |
| 15             |                   | 64          | 9/125 im fiber, units of 100 m (10000m)                                 |
| 16             |                   | 00          | 50/125 im fiber, units of 10 m                                          |
| 17             |                   | 00          | 62.5/125 im fiber, units of 10 m                                        |
| 18             |                   | 00          | Link length supported for copper, units of meters                       |
| 19             |                   | 00          | Reserved                                                                |
| 20             |                   | 44          | "D" (Vendor name in ASCII character)                                    |
| 21             | -                 | 45          | "E" (Vendor name in ASCII character)                                    |
| 22             | -                 | 45<br>4C    | "L" (Vendor name in ASCII character)                                    |
| 23             | Vendor Name       | 54          | "T" (Vendor name in ASCII character)                                    |
| 24             | _                 | 41          | "A" (Vendor name in ASCII character)                                    |
| 25-35          | _                 | 20          | ,                                                                       |
|                | Channel angeing   |             | (Vendor name in ASCII character)                                        |
| 36             | Channel spacing   | 00          | Specify the channel spacing in units of GHz.                            |
| 37-39          | Vendor OUI        | 00<br>53    | SFP vendor IEEE company ID                                              |
| 40<br>41       | _                 | 50          | "S" (Vendor P/N in ASCII character) "P" (Vendor P/N in ASCII character) |
| 42             | -                 | 42          | "B" (Vendor P/N in ASCII character)                                     |
| 43             | _                 | 44          | "D" (Vendor P/N in ASCII character)                                     |
| 44             | -                 | 2D          | "-" (Vendor P/N in ASCII character)                                     |
| 45             |                   | 31          | "1" (Vendor P/N in ASCII character)                                     |
| 46             |                   | 32          | "2" (Vendor P/N in ASCII character)                                     |
| 47             | Vendor P/N        | 35          | "5" (Vendor P/N in ASCII character)                                     |
| 48             | VEHIOU F/IN       | 30          | "0" (Vendor P/N in ASCII character)                                     |
| 49             |                   | 45          | "E" (Vendor P/N in ASCII character)                                     |
| 50             | _                 | 34          | "4" (Vendor P/N in ASCII character)                                     |
| 51             | _                 | 51          | "Q (Vendor P/N in ASCII character)                                      |
| 52<br>53       |                   | 32<br>52    | "2 (Vendor P/N in ASCII character) "R" (Vendor P/N in ASCII character)  |
| 54             | -                 | 20          | (Vendor P/N in ASCII character)                                         |
| 55<br>55       |                   | 20          | (Vendor P/N in ASCII character)                                         |
| 56-59          | Vendor Rev        | 41 20 20 20 | "A"                                                                     |
| 60-61          | LD wavelength     | 05 1E       | (1310nm)                                                                |
| 62             | DWDM wavelength   | 00          | (10 TOTHIT)                                                             |
| 63             | CC BASE           | XX          | Check sum (0~62)                                                        |
| UJ             | OO_BASE           |             | ded ID Fields                                                           |
| 64             | Reserved          | 00          | ueu id i ieius                                                          |
| 65             |                   | 1A          | (Ty Diachle Ty Fault LOS)                                               |
| 66             | Options<br>PR may | 00          | (Tx_Diasble, Tx_Fault, LOS)                                             |
|                | BR,max            |             | Upper bit rate margin,units of %                                        |
| 67             | BR,min            | 00          | Lower bit rate margin,units of %                                        |
| 68-83<br>84-91 | Vendor SN         | XX          | "DEYYWWVVRSSSS"                                                         |
| х <b>д</b> _Ч1 | Date code         | XX          | "YYMMDD"                                                                |



| 92      | DDM                       | 68 | Diagnostics (Internally Calibrated) |  |  |  |  |
|---------|---------------------------|----|-------------------------------------|--|--|--|--|
| 93      | Enhanced options          | В0 | (Soft Tx_Fault, Soft LOS)           |  |  |  |  |
| 94      | SFF-8472<br>compliance    | 01 | SFF-8472 Compliance Rev.9.3         |  |  |  |  |
| 95      | CC_EXT                    | XX | Check sum (64~94)                   |  |  |  |  |
|         | Vendor Specific ID Fields |    |                                     |  |  |  |  |
| 96-127  | Vendor Specific           | 00 | Vendor Specific EEPROM              |  |  |  |  |
| 128-255 | Reserved                  | 00 | Reserved for SFF-8079               |  |  |  |  |

# **Digital Diagnostic Monitoring Interface (2-Wire Address A2h)**

## Alarm and Warning Thresholds (2 Wire Address A2h)

| Address | # Bytes | Name                  | HEX   | Real Value | Unit | Note |
|---------|---------|-----------------------|-------|------------|------|------|
| 00-01   | 2       | Temp High Alarm       | 5A 00 | 90         | °C   |      |
| 02-03   | 2       | Temp Low Alarm        | EC 00 | -20        | °C   |      |
| 04-05   | 2       | Temp High Warning     | 50 00 | 80         | °C   |      |
| 06-07   | 2       | Temp Low Warning      | F6 00 | -10        | °C   |      |
| 08-09   | 2       | Voltage High Alarm    | 94 70 | 3.8        | V    |      |
| 10-11   | 2       | Voltage Low Alarm     | 6D 60 | 2.8        | V    |      |
| 12-13   | 2       | Voltage High Warning  | 87 8C | 3.47       | V    |      |
| 14-15   | 2       | Voltage Low Warning   | 7A 44 | 3.13       | V    |      |
| 16-17   | 2       | Bias High Alarm       | 4E 20 | 40         | mA   |      |
| 18-19   | 2       | Bias Low Alarm        | 01 F4 | 1          | mA   |      |
| 20-21   | 2       | Bias High Warning     | 3A 98 | 30         | mA   |      |
| 22-23   | 2       | Bias Low Warning      | 01 F4 | 1          | mA   |      |
| 24-25   | 2       | TX Power High Alarm   | 27 10 | 0          | dBm  |      |
| 26-27   | 2       | TX Power Low Alarm    | 02 77 | -12        | dBm  |      |
| 28-29   | 2       | TX Power High Warning | 13 94 | -3         | dBm  |      |
| 30-31   | 2       | TX Power Low Warning  | 04 EB | -9         | dBm  |      |
| 32-33   | 2       | RX Power High Alarm   | 27 10 | 0          | dBm  |      |
| 34-35   | 2       | RX Power Low Alarm    | 0019  | -26        | dBm  |      |
| 36-37   | 2       | RX Power High Warning | 13 94 | -3         | dBm  |      |
| 38-39   | 2       | RX Power Low Warning  | 00 32 | -23        | dBm  |      |
| 40-55   | 16      | Reserved              |       |            |      |      |

#### Notes:

- 1) T<sub>C</sub>: Operating Case temperature
- 2) I<sub>bias</sub>: Bias current at room temperature. The min. setting current is 0 mA.
- 3) Po: Operating optical power of transmitter at room temperature.
- 4) P<sub>SAT</sub>: Overload optical power of receiver
- 5) P<sub>IN</sub>: Sensitivity optical power of receiver

Revision: S0 12/20/2007 www.deltaww.com



#### Calibration Constants (2 Wire Address A2h)

| Address | # Bytes | Name               | HEX         | Description                                                         |
|---------|---------|--------------------|-------------|---------------------------------------------------------------------|
| 56-59   | 4       | Rx_PWR (4)         | 00 00 00 00 | Rx_PWR (4) is set to zero for "internally calibrated" devices.      |
| 60-63   | 4       | Rx_PWR (3)         | 00 00 00 00 | Rx_PWR (3) is set to zero for "internally calibrated" devices.      |
| 64-67   | 4       | Rx_PWR (2)         | 00 00 00 00 | Rx_PWR (2) is set to zero for "internally calibrated" devices.      |
| 68-71   | 4       | Rx_PWR (1)         | 3F 80 00 00 | Rx_PWR (1) is set to 1 for "internally calibrated" devices.         |
| 72-75   | 4       | Rx_PWR (0)         | 00 00 00 00 | Rx_PWR (0) is set to zero for "internally calibrated" devices.      |
| 76-77   | 2       | Tx_I (Slope)       | 01 00       | Tx_I (Slope) is set to 1 for "internally calibrated" devices.       |
| 78-79   | 2       | Tx_I (Offset)      | 00 00       | Tx_I (Offset) is set to zero for "internally calibrated" devices.   |
| 80-81   | 2       | Tx_PWR (Slope)     | 01 00       | Tx_PWR (Slope) is set to 1 for "internally calibrated" devices.     |
| 82-83   | 2       | Tx_PWR<br>(Offset) | 00 00       | Tx_PWR (Offset) is set to zero for "internally calibrated" devices. |
| 84-85   | 2       | T (Slope)          | 01 00       | T (Slope) is set to 1 for "internally calibrated" devices.          |
| 86-87   | 2       | T (Offset)         | 00 00       | T (Offset) is set to zero for "internally calibrated" devices.      |
| 88-89   | 2       | V (Slope)          | 01 00       | V (Slope) is set to 1 for "internally calibrated" devices.          |
| 90-91   | 2       | V (Offset)         | 00 00       | V (Offset) is set to zero for "internally calibrated" devices.      |
| 92-94   | 3       | Reserved           | 00 00 00    | Reserved                                                            |
| 95      | 1       | Checksum           | xx          | Byte 95 contains the low order 8 bits of the sum of bytes 0 – 94.   |

#### A/D Value (2 Wire Address A2h)

| Address | # Bytes | Name                         | Description                                  |
|---------|---------|------------------------------|----------------------------------------------|
| 96-97   | 2       | Temperature (MSB, LSB)       | Internally measured module temperature       |
| 98-99   | 2       | Supply Voltage (MSB, LSB)    | Internally measured supply voltage in module |
| 100-101 | 2       | Tx Bias Current (MSB, LSB)   | Internally measured Tx Bias current          |
| 102-103 | 2       | Tx Optical Power (MSB, LSB)  | Measured Tx output power                     |
| 104-105 | 2       | Rx Received Power (MSB, LSB) | Measured Rx input power                      |
| 106-109 | 4       | Reserved                     |                                              |

#### Notes:Temperature (Signed twos complement value)

| A2h Byte 96 (Temperature MSB) |                       |                       |                |                       |                       |                |                       | A               | 2h Byte         | e 97 (Te        | mperati | ure LSB         | )               |                 |                 |
|-------------------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|-----------------------|-----------------|-----------------|-----------------|---------|-----------------|-----------------|-----------------|-----------------|
| S                             | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | 2 <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> | 2 <sup>-1</sup> | 2 <sup>-2</sup> | 2 <sup>-3</sup> | 2-4     | 2 <sup>-5</sup> | 2 <sup>-6</sup> | 2 <sup>-7</sup> | 2 <sup>-8</sup> |

#### Supply Voltage, Tx Bias Current, Tx Optical Power, Rx Received Power (Unsigned values)

|                             | A2h Byte 98 (V <sub>cc</sub> MSB) |                 |                 |                 |                 |                       |                            |                             |                | A2h Byte 99 (V <sub>cc</sub> LSB) |                |                |                       |                |                       |  |
|-----------------------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|----------------------------|-----------------------------|----------------|-----------------------------------|----------------|----------------|-----------------------|----------------|-----------------------|--|
| A2h Byte 100 (TX Bias MSB)  |                                   |                 |                 |                 |                 |                       | A2h Byte 101 (TX Bias LSB) |                             |                |                                   |                |                |                       |                |                       |  |
| A2h Byte 102 (TX Power MSB) |                                   |                 |                 |                 |                 |                       |                            | A2h Byte 103 (TX Power LSB) |                |                                   |                |                |                       |                |                       |  |
|                             | A2h Byte 104 (RX Power MSB)       |                 |                 |                 |                 |                       |                            |                             |                | A2h Byt                           | e 105 (        | RX Pow         | er LSB)               | )              |                       |  |
| 2 <sup>15</sup>             | 2 <sup>14</sup>                   | 2 <sup>13</sup> | 2 <sup>12</sup> | 2 <sup>11</sup> | 2 <sup>10</sup> | <b>2</b> <sup>9</sup> | 2 <sup>8</sup>             | 2 <sup>7</sup>              | 2 <sup>6</sup> | <b>2</b> <sup>5</sup>             | 2 <sup>4</sup> | 2 <sup>3</sup> | <b>2</b> <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> |  |

The digital value conversions are updated every 13ms (nominal) or 20ms (max) in rotation. After getting digital value, each measurement could be obtained by multiplying digital value by corresponding LSB value:

Temperature = Temp (Digital Value)  $\times$  LSB<sub>Temp</sub> = Temp (Digital Value)  $\times$   $\frac{1}{256}$ ; when Temperature<128

Revision: S0 12/20/2007



Temperature = Temp (Digital Value)  $\times$  LSB<sub>Temp</sub> = [Temp (Digital Value)  $\times$   $\frac{1}{256}$ ]-256; when Temperature  $\ge$  128

 $V_{\text{cc}} = V_{\text{cc}}(\text{Digital Value}) \times LSB_{\text{Vcc}} = V_{\text{CC}}(\text{Digital Value}) \times 100 \mu V$ 

TX Bias Current = TX Bias Current (Digital Value)  $\times$  LSB<sub>TX,Bias</sub> = TX Bias Current (Digital Value)  $\times$  2 $\mu$ A

TX Power = TX Power (Digital Value)  $\times$  LSB<sub>TXPower</sub> = TX Power (Digital Value)  $\times$  0.1 $\mu$ W

RX Power = RX Power (Digital Value)  $\times$  LSB<sub>RXPower</sub> = RX Power (Digital Value)  $\times$  0.1 $\mu$ W

#### Optional Status/Control Bits (2 Wire Address A2h)

| Address | Bit | Name                 | Description                                                    |
|---------|-----|----------------------|----------------------------------------------------------------|
| 110     | 7   | TX Disable State     | Not implement.                                                 |
| 110     | 6   | Soft TX Disable      | Not implement.                                                 |
| 110     | 5   | Reserved             |                                                                |
| 110     | 4   | RX Rate Select State | Not implement.                                                 |
| 110     | 3   | Soft RX Rate Select  | Not implement.                                                 |
| 110     | 2   | TX Fault State       | Digital state of the TX Fault Output Pin.                      |
| 110     | 1   | LOS                  | Digital state of the LOS Output Pin.                           |
| 110     | 0   | Data_Ready_Bar       | Indicates transceiver has achieved power up and data is ready. |
| 111     | All | Reserved             | Reserved for SFF-8079                                          |

#### Alarm/Warning Flag Bits (2 Wire Address A2h)

| Address | Bit | Name                  | Description                                                  |  |  |  |
|---------|-----|-----------------------|--------------------------------------------------------------|--|--|--|
| 112     | 7   | Temp High Alarm       | Set when internal temperature exceeds high alarm level.      |  |  |  |
| 112     | 6   | Temp Low Alarm        | Set when internal temperature is below low alarm level.      |  |  |  |
| 112     | 5   | Vcc High Alarm        | Set when internal supply voltage exceeds high alarm level.   |  |  |  |
| 112     | 4   | Vcc Low Alarm         | Set when internal supply voltage is below low alarm level.   |  |  |  |
| 112     | 3   | TX Bias High Alarm    | Set when TX Bias current exceeds high alarm level.           |  |  |  |
| 112     | 2   | TX Bias Low Alarm     | Set when TX Bias current is below low alarm level.           |  |  |  |
| 112     | 1   | TX Power High Alarm   | Set when TX output power exceeds high alarm level.           |  |  |  |
| 112     | 0   | TX Power Low Alarm    | Set when TX output power is below low alarm level.           |  |  |  |
| 113     | 7   | RX Power High Alarm   | Set when Received Power exceeds high alarm level.            |  |  |  |
| 113     | 6   | RX Power Low Alarm    | Set when Received Power is below low alarm level.            |  |  |  |
| 113     | 5-0 | Reserved Alarm        |                                                              |  |  |  |
| 114-115 | All | Reserved              |                                                              |  |  |  |
| 116     | 7   | Temp High Warning     | Set when internal temperature exceeds high warning level.    |  |  |  |
| 116     | 6   | Temp Low Warning      | Set when internal temperature is below low warning level.    |  |  |  |
| 116     | 5   | Vcc High Warning      | Set when internal supply voltage exceeds high warning level. |  |  |  |
| 116     | 4   | Vcc Low Warning       | Set when internal supply voltage is below low warning level. |  |  |  |
| 116     | 3   | TX Bias High Warning  | Set when TX Bias current exceeds high warning level.         |  |  |  |
| 116     | 2   | TX Bias Low Warning   | Set when TX Bias current is below low warning level.         |  |  |  |
| 116     | 1   | TX Power High Warning | Set when TX output power exceeds high warning level.         |  |  |  |
| 116     | 0   | TX Power Low Warning  | Set when TX output power is below low warning level.         |  |  |  |
| 117     | 7   | RX Power High Warning | Set when Received Power exceeds high warning level.          |  |  |  |
| 117     | 6   | RX Power Low Warning  | Set when Received Power is below low warning level.          |  |  |  |
| 117     | 5-0 | Reserved Warning      |                                                              |  |  |  |
| 118-119 | All | Reserved              |                                                              |  |  |  |



# Vendor Specific and User Accessible EEPROM (2 Wire Address A2h)

| Address | # Bytes | Name               | Description                                           |
|---------|---------|--------------------|-------------------------------------------------------|
| 120-122 | 3       | Reserved           |                                                       |
| 123     | 1       | Password Byte 3    | High order byte of 32 bit password                    |
| 124     | 1       | Password Byte 2    | Second highest order byte of 32 bit password          |
| 125     | 1       | Password Byte 1    | Second lowest order byte of 32 bit password           |
| 126     | 1       | Password Byte 0    | Low order byte of 32 bit password                     |
| 127     | 1       | User EEPROM Select | "1" selects user writable EEPROM at locations 128-247 |
| 128-247 | 120     | User EEPROM        | User writable EEPROM                                  |
| 248-255 | 8       | Vendor Specific    | Vendor specific control functions                     |

# 11. Regulatory Compliance

| Feature                                              | Test Method        | Reference                                              | Performance                      |
|------------------------------------------------------|--------------------|--------------------------------------------------------|----------------------------------|
| Electrostatic Discharge                              | Human Body Model   | MIL-STD-883E Method 3015.7                             |                                  |
| (ESD) to the Electrical                              | (HBM)              | EIA-JESD22-A114                                        |                                  |
| Pins                                                 | Machine Model (MM) | EIA-JESD22-A115                                        | (1) Satisfied with               |
| Electrostatic Discharge                              | Contact Discharge  | IEC/EN 61000-4-2                                       | electrical                       |
| (ESD) to the Simplex Receptacle                      | Air Discharge      | IEC/EN 61000-4-2                                       | characteristics of product spec. |
| Radio Frequency<br>Electromagnetic Field<br>Immunity |                    | IEC/EN 61000-4-3                                       | (2) No physical damage           |
| Electromagnetic Interference (EMI)                   |                    | FCC Part 15 Class B<br>EN 55022 Class B<br>(CISPR 22A) |                                  |
| Lacon Five Cofety                                    | FDA/CDRH           | FDA 21CFR 1040.10, 1040.11                             | CDRH File # 0420993              |
| Laser Eye Safety                                     | TUV                | IEC/EN 60825-1<br>IEC/EN 60825-2                       | TUV Certificate #<br>R50032471   |
| Component Recognition                                | TUV                | IEC/EN 60950                                           |                                  |
|                                                      | UL/CSA             | UL 60950                                               | UL File # E239394                |

# **Appendix A. Document Revision**

| Version No. | Date       | Description           |
|-------------|------------|-----------------------|
| S0          | 2007-12-20 | Preliminary datasheet |
|             |            |                       |