

Version 1.1
January 14, 2020

T e c h ni c a l W h i t e P a p e r

UBUNTU CORE
Cybersecurity Analysis

Ubuntu Core is a complete open source solution
for a predictable, reliable, and secure operating
system specifically targeted at Internet of Things
(IoT) devices and highly scalable container
deployments. As a comprehensive, secure
ecosystem, Ubuntu Core solves many of the
challenges associated with traditional Linux
distribution models, while providing developers
with unprecedented flexibility and the ability to
truly continuously integrate and deploy to any
number of devices.

This white paper provides an independent, third-
party evaluation of the security provided by
Ubuntu Core. The statements in these pages are
data driven, built upon extensive testing of the
ecosystem, including the overall architecture and
design, authentication controls, deployment to
end-user devices, and execution of custom device
applications via snaps.

Based on the analysis, Ubuntu Core represents a
well-balanced approach to securely deploy and
maintain applications on IoT devices, embedded
systems, or similar large-scale deployments.

KEY TAKEAWAYS
• Ubuntu Core represents a secure, structured

ecosystem for large scale IoT device
deployments and software lifecycle
management.

• There are many inherent benefits to adopting
Ubuntu Core as the platform for large scale
CI/CD device deployments.

• A thorough review of the entire ecosystem
resulted in no critical security findings.

Introduction _________________________________ 2
Viewpoint on Ubuntu Core ____________________ 2

Hardened by design ________________________ 3
Complexity management and reduction ______ 3
DevOps and SOAR alignment _______________ 4
High velocity deployment ___________________ 4
Rapid remediation _________________________ 4
Security offload ___________________________ 4

Testing Approach and Findings ________________ 6
Scope of review ____________________________ 6
Evaluation methodology ___________________ 6
Control point data sources __________________ 7
Control point testing _______________________ 7
Summary of observations ___________________ 8

The Case for Adoption of Ubuntu Core ________ 12
All the power of Linux _____________________ 12
Structured security ________________________ 12
Velocity __________________________________ 12
Secure lifecycle management ______________ 12

Summary and Conclusion ____________________ 13
Appendix – Security Control Point Sources ____ 14

 Ubuntu Core Ecosystem Cybersecurity / 2

Introduction
Ubuntu, as the world’s most widely deployed
Linux distribution, is embraced by users,
developers, and manufacturers alike as the easy-
to-use, feature-rich de facto Linux standard.
Recognizing the advent of Internet of Things (IoT)
devices and large container deployments,
Canonical has created an open source, purpose-
built distribution for this new world: Ubuntu Core.

Canonical has provided the community with
substantial documentation and supporting
materials explaining the Ubuntu Core architecture
and approach, including details of the control
points that provide security protections. To remain
consistent with industry practice, however, security
architecture and controls should always be
reviewed by a qualified, independent party to
identify strengths and residual risks.

This white paper provides an independent, third-
party evaluation of the security architecture and
controls provided by Ubuntu Core and its
ecosystem.

Viewpoint on Ubuntu Core
The advent of Linux has brought transformational
change to the technology landscape, offering a
rich set of abstractions and tools for the general-
purpose computing market. Unfortunately, the
historic focus on supporting such a wide array of
user-focused features has produced Linux
distributions that are easy-to-use and incredibly
powerful, but not well-suited for purpose-specific
uses such as appliances, IoT/Industrial IoT (IIoT)
devices, and other situations where an embedded
operating system is desired.

Specialized embedded operating systems have
been available for many decades, but typically
have suffered as “closed” products where
functionality was limited and enhancements were
highly dependent on the vendor. Even more

problematic is the lack of fleet management
functionality — typically, the embedded OS was
installed when the device was shipped, and
barring some herculean effort, that same version
and functionality were likely still on the device
when it went to its grave. This may have been
acceptable in the days of non-networked devices,
but we’re well past that.

It’s clear that Ubuntu Core was thoughtfully
architected with this knowledge and real-world
experience in mind. It strikes the balance of
benefiting from the flexibility of the rich Linux
ecosystem, but in an open source framework that
provides security, scalability, and manageability.
These essential attributes frame the benefits
provided by Ubuntu Core.

ABOUT RULE4

Rule4 is a highly credentialed global provider
of cybersecurity and emerging technology
professional services. Combined, its experts
have more than a century of experience in the
field, and its team is recognized industry-wide
for leveraging this experience to evaluate risk
and solve complex problems in a practical way.

Rule4 has amassed credentials that include
CISSP, CSSA, GIAC GCFA, CISA, ISSMP, HCISSP,
ISSAP, GSNA, and OSCP certifications. Its engi-
neers are led by two co-authors of the Linux
and Unix System Administration Handbook,
now in its fifth edition.

As a Certified B Corporation, Rule4 proudly
demonstrates the organization’s commitment
across the board to first do what’s right.

 Ubuntu Core Ecosystem Cybersecurity / 3

Hardened by design

Ubuntu Core takes a security-first approach,
ensuring that security is built in throughout the
entire application and device lifecycle. While most
of the Ubuntu Core attributes directly support
security in some manner, the architecture itself
establishes a secure foundation that is easily built
upon. As illustrated in Figure 1, a minimal OS, the
kernel, and device drivers are packaged and
installed as snaps, as are gadget-specific
applications. At runtime, individual applications
are rigidly sandboxed via a policy-based system
that restricts access to the filesystem, network
interfaces, system calls, and other standard Linux
facilities. This approach provides an extraordinary
amount of fine-grained security control that can
be used to ensure that both the device and any
associated data is adequately protected. Out of

the box, Ubuntu Core provides the ability to easily
deploy security updates across the application,
gadget, and base system.

Complexity management and
reduction

Through the standardization of application and
feature deployments via snaps, combined with
centralized management through a brand-specific
snap store, Ubuntu Core greatly reduces overall
complexity in environments where fleets of
devices need to be deployed, secured, managed,
and updated. This approach enables global device
management capabilities, whether it be within a
large enterprise or across a large, distributed
customer base.

Figure 1: Ubuntu Core OS and package installation and execution

Ubuntu
Core

kernel (AppArmor, seccomp, cgroups, etc.)

snapd systemd

dbus glibc

App A

App B

Clearly defined
kernel and device
driver packaged

as snap

Process and
filesystem

sandbox

App A

INSTALL RUNTIME

Minimal OS
packaged as snap

Process and
filesystem

sandbox

App B

 Ubuntu Core Ecosystem Cybersecurity / 4

DevOps and SOAR alignment

The DevOps and Security Orchestration,
Automation, and Response (SOAR) movements
emphasize the need for modularity and
automation, with integration spread across
multiple technical disciplines. This approach
creates an environment where consistency,
repeatability, and security are driven through a
standardized, automated toolset. The Ubuntu Core
ecosystem slots into a continuous integration/
continuous deployment (CI/CD) pipeline perfectly.
End-to-end application and lifecycle management
are provided by Ubuntu Core as illustrated in
Figure 2.

High velocity deployment
By providing tools that leverage existing Linux
projects, Ubuntu Core enables faster prototyping
which ultimately reduces time-to-market.
Developers can now bring the knowledge,
innovation, and power of the entire Linux
community to bear on the problem at hand. This
means support hardware and integrations in
addition to security fixes and enhancements.

Rapid remediation

One of the most significant challenges facing the
embedded systems and IoT device market is long-
term lifecycle management. Maintaining the
security profile of a fleet of devices in the field
requires a mechanism to easily and rapidly deploy
patches and upgrades as new vulnerabilities are
discovered. Using the snap deployment
infrastructure, Ubuntu Core developers can rapidly
deploy targeted patches to affected devices
without any end-user involvement.

Security offload
As the complexity and utility of technology has
increased, so too has the scope of the environment
that needs to be secured. By utilizing the rich
existing code base for Linux, the burden of
identifying and patching vulnerabilities in
common elements such as the kernel, network
services, and other common tools is effectively
offloaded to the community, such that the Ubuntu
Core developer need only focus their security
mindshare on their purpose-specific application.
This results in an overall system that has been
vetted by thousands of developers and security
practitioners worldwide, increasing the overall
trustworthiness of the device.

Figure 2: Application lifecycle in Ubuntu Core

Make your
app

Manual or CI/CD
generated snap

Upload to
the store Distribute

Patch or
enhancement

< / >< / >

 Ubuntu Core Ecosystem Cybersecurity / 5

UBUNTU CORE SANDBOXING

The primary tenet of Ubuntu Core security is application sandboxing. Canonical’s Ubuntu Core Security Whitepaper
provides an overview of the components that facilitate the sandboxed environments within Ubuntu Core; these are
summarized in the table below for reference.

You can learn more about sandboxing and other Ubuntu Core technical controls, including how to configure them (where
applicable), within these resources:

• Security and Sandboxing – https://docs.ubuntu.com/core/en/guides/intro/security

• Ubuntu Core Security Whitepaper – https://assets.ubuntu.com/v1/66fcd858-ubuntu-core-security-
whitepaper.pdf

• Snap Security Confinement – https://snapcraft.io/blog/where-eagles-snap-snap-security-overview

AppArmor – AppArmor is Ubuntu’s
Mandatory Access Control (MAC)
system, which ensures kernel-level
enforcement of programs and pro-
cesses to a limited set of resources.
Application confinement in
Ubuntu Core is such that the child
process will inherit the parent’s
label and therefore policy.
AppArmor restricts processes run-
ning either as root or non-root,
and confinement policy is provided
via profiles loaded into the kernel.

Namespaces – A facility provided
by the Linux kernel that allows
separation of processes such that
they cannot see or access resources
from another namespace. Several
namespaces exist, such as file,
network, and mount. Ubuntu Core
uses a mount namespace to
implement a per-snap /tmp
directory in addition to sharing
content between snaps and the
system.

Seccomp – User space programs
that need to interact with the
hardware do so via kernel syscalls.
The launcher will set a seccomp
filter for the program before
executing it to limit the syscalls the
process may use. Child processes
inherit the parent’s seccomp filter,
and they can make the filter more,
but not less, strict.

Traditional Permissions – The Linux
kernel enforces Discretionary
Access Controls (DAC) via tradi-
tional UNIX “owner” permissions
and Linux kernel capabilities. For
app snaps on Ubuntu Core, services
run as root and therefore tradi-
tional permissions alone don’t play
as important a role in the confine-
ment of services.

Control Groups – Cgroups group
processes for resource limiting,
prioritizing, accounting, and more.
Ubuntu Core currently uses the
“devices” cgroup for hardware
device access controls for hardware
assignment.

devpts newinstance – The Linux
kernel provides pseudoterminal
(PTYs) functionality for login
sessions and TTY capabilities.
Ubuntu Core configures the devpts
filesystem in multi-instance mode
and mounts a new devpts instance
per command to prevent snooping
and input injection via /dev/pts.

Ubuntu Hardening – Canonical-supplied kernels have the kernel hardening benefits of classic Ubuntu kernels
including ptrace scoping, symlink restrictions, and hardlink restrictions. Applications using the Ubuntu Core base
system libraries and interpreters, as well as applications built with the Ubuntu toolchain or bundling debs from the
Ubuntu archive (e.g., using snapcraft), benefit from the same toolchain and glibc hardening protections available to
classic Ubuntu and the Ubuntu Core base system.

 Ubuntu Core Ecosystem Cybersecurity / 6

Testing Approach and Findings
Independent third-party cybersecurity review,
testing, and validation are important components
of a comprehensive cybersecurity program. The
testing activity described here was performed
independently and provides an unbiased third-
party perspective on risks within the Ubuntu Core
ecosystem.

A disciplined, methodical, and comprehensive
analysis of Ubuntu Core was used to validate the
strengths of its cybersecurity controls and identify
any potential deficiencies in its architecture. The
cybersecurity profile of the entire Ubuntu Core
ecosystem was built using a combination of
detailed threat mapping and hands-on technical
testing of controls and behaviors.

At a high level, the testing approach followed this
process:

1. Scope bounding, verification, and final
definition based on objectives

2. Evaluation approach and methodology
development

3. Control point collection and development

4. Control point testing and findings
documentation

Scope of review

The potential use cases for Ubuntu Core are
limited only by the creativity and imagination of
those using it as a baseline for projects or
products. Developers must retain responsibility for
implementation decisions that may alter the
expected behavior of a system, but that’s
predicated on knowledge and understanding of
the baseline capabilities on which that
customization occurs. Figure 3 depicts the
boundaries used as the basis for this review.
Elements colored orange were defined as in scope.
As implied by the diagram, Canonical infra-
structure, policy, and procedures were not the
focus of this review.

Evaluation methodology

The approach for this Ubuntu Core and ecosystem
review shares some similarities with Common
Criteria (CC) evaluation such as that performed on
Ubuntu 16.04. Formal security specifications
haven’t been publicly developed or released by
Canonical for Ubuntu Core in support of CC
certification; however, Canonical provides
documentation that helps illuminate the security
controls and design of the Ubuntu Core system.

These sources of documented cybersecurity
control points, both explicit and implied, were

Ubuntu Onesnapcraft.io

Infrastructure

Performance and security
monitoring, policy/procedure,

config management, etc.

SSDLC and
Arch Design

Ubuntu Core, snapd,
snaps, snapcraft

Auth/ID Internet

End-User
Devices

End-User
Environment

(snapd, snap
deployment,

etc.)

 in scope

Figure 3. Testing scope

 Ubuntu Core Ecosystem Cybersecurity / 7

used as a baseline for technical testing. In some
cases, control points were derived from critical
consideration of the intent, control, or overall
objective of the area of review. The methodology
is depicted in Figure 4.

Control point data sources
Multiple data sources were used to build a control
point inventory. The primary source was the
Ubuntu Core Security Whitepaper, though several
other references (including official blog posts)
were used to gather control point baselines. A
complete list of sources is presented in the
appendix.

Source material was then carved into domains of
review:

• Ubuntu Core OS (kernel + utilities)
• Snap package/container model
• Snapd and snap deployment
• Brand snap store
• Authentication, identification, and

authorization
• Public snap control/protections
• Trust model/ecosystem
• Threat modeling and risk allocation

Control point testing
Threat vectors for testing were developed through
a threat modeling exercise that identified
outcomes if the control point were found to be
weak. Testing was then performed to determine
the efficacy of the control point and to identify
any potential exploitable vulnerabilities. In total,
136 threat map entries were developed, reviewed,
and tested.

To better understand the threat chain, consider an
example: A statement from the Ubuntu Core
Security Whitepaper, “The snap’s security policy
does not allow modification of the security
sandbox in which it runs,” is treated as an explicit
control point. A threat vector based on this control
point would be “Security policy bypass enables
modification of the security sandbox.” From there,
the appropriate test is to attempt to identify
mechanisms or approaches by which policy could
be bypassed and the sandbox modified.

In every case, testing focused only on claimed
cybersecurity control points and was not intended
to pursue each and every potential failed control
point or threat vector to exploitation.

Figure 4. Evaluation methodology

Data
sources

Assertion
development

Test
definition Testing

Assertion intent reference

Assertion
proved/disproved

Testing refinement

 Ubuntu Core Ecosystem Cybersecurity / 8

Summary of observations

After testing, a detailed list of observed potential
risks and technical recommendations was
developed and shared with Canonical. Given the
large scope of testing, with multiple review
domains, the number of observations was
relatively low. Though recommendations were
identified that present opportunities for evolution
of the platform in some domains, the lack of high-
risk findings supports Ubuntu Core as a reasonable
choice to securely deploy and maintain

applications on IoT devices and other embedded
systems.

Ubuntu Core Strengths

The cybersecurity strengths of the platform are
clear, but as is always the case, organizations
should perform due diligence and investigate any
platform before diving in. To that end, the findings
table below provides insights into platform
strengths and key capabilities.

Domain Strengths

Brand Snap Store Access controls and authorization decisions are sound and incorporate elements and controls
that would be expected for similar service platforms today.

Cryptographic controls and signing are used in an appropriate way to help manage snap
integrity and grant assurances to consumers.

Device binding to brand stores helps reduce the risk to deployed systems and devices of
unauthorized snap installations or updates from low-trust sources beyond those approved by
the brand.

Careful consideration has been afforded to layers and models of trust within the brand snap
store, enabling adaptability in line with the adopter-specific security needs.

Public Snap
Control/
Protections

Sandboxing protections and a combination of automatic review and trigger-based human
review provide layered defenses against snap compromise.

Policy-based snap inspection and interface declaration assertions help ensure timely review
while balancing agility and rapid deployment needs.

Effective use of channels and confinement modes helps to ensure production risk is minimized
while enabling a flexible development and testing experience.

Publisher (adopter) trust remains a key aspect of the trust model to support highly variable use
cases, implementation needs, and security requirements that are specific to the adopter — as
opposed to mandating requirements.

 Ubuntu Core Ecosystem Cybersecurity / 9

Domain Strengths

Snap Package/
Container

Snaps are controlled and operated in a manner that prevents unplanned or unauthorized
access to privileged system APIs, portions of the OS, or non-application-specific user data.

By default, snaps have significant restrictions that reduce risk to the underlying system,
including restrictions related to user changes, job scheduling, unapproved hardware access,
user management, security policy, kernel runtime variable, sensitive kernel syscalls, and others.

The OS snap provides control enforcement as subsequent snaps are deployed, ensuring a more
consistent and dependable configuration.

Sensitive interfaces that provide privileged access and are configured for auto-connection are
blocked and carefully vetted, requiring manual review.

Strict confinement with manual interface control can be used to implement fine-grained snap
protections in higher-risk scenarios.

Snapd and Snap
Deployment

As a shared strength and also potential point of awareness, snaps are based heavily on debs
and are subject to the vetting and validation method used by them in updates/releases.

Snaps provide a means for safe and effective rollbacks in the event of bugs or deployment
issues.

Snaps and sandboxing help isolate the broader system from various failure scenarios that may
otherwise have broader reach on traditional systems.

Trust Models/
Ecosystem

As an open source platform, there are structures in place that provide public visibility and
feedback mechanisms into Canonical’s mediation of issues and changes.

Reasonable and expected effort is applied to establishing trust through cryptographic means.

Ubuntu Core
(Kernel + Utilities)

The Ubuntu Core OS snap provides a relatively lightweight and known profile (built from
trusted debs) upon which to layer trust and additional points of control mediation. The base
system itself contains little more than the kernel, the init process, snapd (a separate snap in
later versions), standard Linux/UNIX tools, libraries to support these tools, and a limited
number of common tools to support application development.

A minimized attack surface relative to traditional deployments is used to help reduce risk to
systems.

Significant settings and configuration artifacts beyond default services and exposure profile
(e.g., provisioned user logins, well-known system accounts, SSH password-based logins) are
configured in a secure, restrictive manner out of the box.

Sandboxing and snap confinement are key tenets of the Ubuntu Core approach to risk
reduction. Application confinement is enforced during runtime via discretionary access controls
(DAC), mandatory access controls (MAC), AppArmor, seccomp kernel system call filtering
(limiting the system calls a process may use), and cgroups device access controls (for hardware
assignment).

 Ubuntu Core Ecosystem Cybersecurity / 10

Operational security considerations

Deploying any system into an operational
environment requires careful thought and
planning; even the best-architected, highly secure
platform can be rendered insecure if integrated
incorrectly or without proper regard for its
intended controls and design elements.

The Ubuntu Core ecosystem is designed to provide
a scalable, secure solution for large fleet
development and operations. While the specific
requirements of every organization, application, or
team are different, there are many components of
Ubuntu Core that likely interact with operational
security and should be carefully considered as part
of a production deployment.

During this analysis of Ubuntu Core, threat
modeling activities identified the following
potential operational security interactions. The
development and operations teams responsible
for production deployment of Ubuntu Core may
find these useful to consider.

Domain Opportunity Mitigating Factors, Controls, or Notes

Brand Snap Store Key creation and key signing role constraint
improvements should be made to help
manage deployment risk and bind specific
operations to appropriate key classes.

Platform adopter, developer, or operator key
management controls can reduce the risk of
improper use.

Require multifactor authentication for snap
store SSO logins as the default. Roll out
activation and enrollment such that
Canonical employee intervention is not
required.

Platform adopter must expend the effort
necessary to enable. Ensure trust model and
delegation to Canonical is understood.

The brand organization (as opposed to
Canonical) should own account lifecycle
management.

Periodic audit and review of accounts by
platform adopter to ensure no unauthorized
changes are made.

Improve documentation accuracy and
completeness related to permissions,
accounts, and overall brand store process.

Mainly an adoption-issue, and ensuring
behaviors align with expectations.

Snap Package/
Container

Network traffic constraints should be
considered and improved relative to snap
requirements to mitigate the risk of what is
today essentially a binary decision (access or
no access).

Egress firewalling, appropriate network
placement, or other similar controls added by
platform adopter can reduce the risk of
unauthorized egress traffic.

Though more supportive of legacy software,
strict snaps would benefit from running as a
non-root user by default.

Platform adopter awareness of snap context,
and appropriate vetting and trust
management related to snaps.

“ Even the best-architected, highly
secure platform can be rendered
insecure if integrated incorrectly or
without proper regard for its intended
controls and design elements.

”

 Ubuntu Core Ecosystem Cybersecurity / 11

Domain Opportunity Mitigating Factors, Controls, or Notes

AppArmor policy improvements would help
prevent snaps from harvesting information
beyond ideal boundaries as is possible today
even without the system-observe interface
enabled (e.g., “ps aux” output may contain
data that would be ideal to restrain).

Platform adopter awareness regarding cross-
snap visibility and potential leakage vectors.

Trust Models/
Ecosystem

The voting system for interface auto-
connection could improve accountability by
integrating technical peer review
requirements and transparency in the form of
an immutable ledger of review and approval.

Platform adopter awareness and due
diligence regarding snap configuration
defaults (similar to user responsibilities
regarding software library risks).

There should be no option to create and use
passphraseless keys, and reasonable
passphrase requirements should be enforced.

Platform users can ensure administratively
that no such keys are created.

The trusted root CAs included, while useful
and ensuring improved as-built compatibility,
are too numerous and should ideally require
explicit addition as part of the configuration
process to minimize the risk related to CA
compromise and abuse.

Platform adopter may modify certificates to
meet their needs and trust requirements.

Ubuntu Core
(Kernel + Utilities)

Read-only root filesystem control points,
while foundationally strong, can be
overridden with access to a root shell. It is
important this be clearly conveyed, and the
importance of root access controls
reinforced.

Platform implementer must ensure strict
control regarding access to root shells in all
cases in order to ensure the control point is
intact. This mitigating factor should always
be an objective.

SSH is enabled by default, and though
valuable in some scenarios, it is likely to be
undesirable in many. Ideally, default
configurations would support the most
secure configuration with options to provide
added functionality if needed. Options such
as limited time-bound service availability may
be reasonable as a compromise. Additionally,
default accepted ciphers are too generous
(e.g., HMAC-SHA1).

Gadget settings can be used to override the
Canonical default selection where
appropriate. Adopters should be aware of
the default state. Deployers could (and
should when appropriate) adjust and
strengthen ciphers to meet their specific
needs.

Passwordless sudo misses an opportunity to
provide an additional layer of protection
following access to a management shell.

Adopters can integrate changes to this
default behavior into build and CI/CD
procedures to improve the default state.

 Ubuntu Core Ecosystem Cybersecurity / 12

The Case for Adoption of Ubuntu Core
Increased competition in the IoT, medical, and
robotic device space has raised the pressure on
manufacturers and developers to rush products to
market. Historically, this rush to market has
resulted in lack of adequate thought, planning,
and tools around device security. Often, support
for software and OS updates, and other long-term
lifecycle management activities, is inadequate or
nonexistent.

Traditional embedded system models have left
much to be desired. One approach has been to
develop an all-custom platform or utilize a
commercial microkernel. In the era of highly
networked and integrated devices, this approach
has become impractical, simply due to the amount
of base functionality that must be implemented to
be part of a larger networked environment. This
includes the need for a network stack, logging,
patch management, event monitoring and
correlation, cryptography, integration APIs,
centralized authentication, and shared database
access, to name a few.

On the other side is the approach of building upon
an existing minimalist Linux distribution. This has
the advantage of a ready-made team of qualified
developers and a rich set of available functionality,
but is missing basic security structures, including:

• application validation and sandboxing;
• fleet management facilities to provide OS,

module, and application updates; and
• CI/CD pipeline management.

In short, the “Let’s just build this on Linux”
approach might be great for a university research
project or single-instance proof-of-concept
deployment, but it fails spectacularly at any level
of enterprise or customer scale, especially over
time.

Ubuntu Core is the thoughtfully architected
middle ground, and the case for its adoption boils
down to four key points.

All the power of Linux
Ubuntu Core harnesses all the power of Linux and
the already abundant and growing Ubuntu snap
community. This creates a conduit to the latest and
greatest features, device support, third-party
platform integrations, and standard interfaces
such that a developer can focus on their unique
value proposition and not waste time writing code
to solve a problem that’s already been solved.

Structured security

The Ubuntu Core ecosystem provides a complete
package for structured, maintainable security.
While there is no zero-risk answer when deploying
networked devices, as validated as part of the
testing performed for this white paper, Ubuntu
Core presents a reasonable balance of end-to-end
lifecycle security controls within a framework that
empowers the developer with a wide array of
flexibility. The structure of the ecosystem is such
that it enables application of fine-grained security
controls, but in a manner that reduces the overall
long-term support workload.

Velocity

The embedded systems/IoT world is fast-paced,
with no margin for error on timing. The snap-
based approach of Ubuntu Core enables rapid
development and deployment of initial
functionality, as well as long-term functionality
add-ons and enhancements, all built into the
ecosystem toolset. Further, snapd roll-back
capabilities help reduce velocity risk and provide
rapid recovery paths.

Secure lifecycle management

Ubuntu Core also solves the device registration,
management, and update problem, including
closing the loop for ensuring that updates are
authentic. Security is only as strong as the weakest
link, and in that light, it is imperative that every
layer of the device be easily patchable, with

 Ubuntu Core Ecosystem Cybersecurity / 13

integrated code authenticity validation such that
unauthorized or malicious code cannot be
introduced. This whole process is backed by
Canonical’s commitment to provide 10 years of

OS-layer patches for the platform, ensuring each
device can be properly maintained throughout its
usable life.

Summary and Conclusion
Ubuntu Core provides a comprehensive, secure
ecosystem that solves many of the challenges
associated with traditional Linux distribution
models while providing developers with flexibility
and control.

While there are many positive attributes of the
Ubuntu Core approach, perhaps the most
attractive is the security-first approach that
provides structured, maintainable security in every
aspect of the system and the device lifecycle. This
attribute was the primary focus of the testing
performed within the scope of this white paper, as
trust in security is only as deep as the independent
review that has been performed.

The data-driven approach used for this security
testing ensured that all aspects of the system were
evaluated and included everything from user
workflow and interfaces, to brand snap store
functions, to application security policy and
sandboxing restriction effectiveness, to the
deployment and update process.

At the highest level, no critical findings were
identified through testing. This validates Ubuntu
Core as a secure, well-balanced platform choice

for deploying applications on embedded systems
for IoT devices and other similar large-scale
deployments.

It’s true that there is no perfect approach to secure
ecosystem design and management, but Ubuntu
Core represents a significant step forward in a
holistic approach to this problem – it brings all of
the power of the Linux and snap world to the
developer’s fingertips, while providing just
enough structure and power through fine-grained
security controls, hardening, and sandboxing in an
open source platform that provides for long-term
fleet lifecycle management. These attributes
together form a security arbitrage that is a win-
win for the IoT world.

“ Ubuntu Core provides a comprehensive,
secure ecosystem that solves many of
the challenges associated with
traditional Linux distribution models
while providing developers with
flexibility and control.

”

Rule4, Inc. / 3002 Bluff Street, Suite 100, Boulder, CO 80301 / +1-720-580-5888 / www.rule4.com
© 2020 Rule4, Inc. All rights reserved.
Suggested Citation – Rule4. (2020). Ubuntu Core Cybersecurity Analysis [White paper].

Appendix – Security Control Point Sources

• Ubuntu Core Security Whitepaper [version 3.0.0]

https://assets.ubuntu.com/v1/66fcd858-canonical-ubuntu-core-security-2018-11-13.pdf

• Security and Sandboxing Documentation

https://docs.ubuntu.com/core/en/guides/intro/security

• Ubuntu Core Security Policies

https://docs.ubuntu.com/core/en/guides/intro/security#working-with-security-policies

• Snapcraft Documentation – Confinement

https://docs.snapcraft.io/snap-confinement/6233

• Snapcraft Documentation – Kernel Snap

https://docs.snapcraft.io/the-kernel-snap/697

• Snap Security Overview [official blog]

https://snapcraft.io/blog/where-eagles-snap-snap-security-overview

• Tools for Making the Snap Trek Easier [official blog]

https://snapcraft.io/blog/snap-up-your-development-tools-for-making-the-snap-trek-easier

