
TCP Congestion Control Comparison
A. Esterhuizen and A.E. Krzesinski

Department of Mathematical Sciences
University of Stellenbosch, 7600 Stellenbosch, South Africa

aek1@cs.sun.ac.za

Tel.: +27 21 808 4232 Fax: +27 21 882 9865

Abstract— This paper investigates the effects that different
TCP variants have on each other. The TCP variants differ in
the congestion control algorithms they employ. The congestion
control algorithms determine how much network traffic is
generated by TCP at any one time, and aims to prevent a
TCP connection from over utilising the network. We investigate
the different congestion control algorithms that are included
as loadable modules in the Linux kernel, and we present
several experiments to investigate how these congestion control
algorithms compete for network resources. We show that some
TCP variants can co-exist, whilst others use excessive bandwidth,
potentially smothering competing TCP connections.

I. INTRODUCTION

The Transmission Control Protocol (TCP) [5] provides a
reliable, connection-oriented transport protocol for transaction-
oriented applications. TCP is used by almost all of the appli-
cation protocols found on the Internet today, as most of them
require a reliable, error-correcting transport layer to ensure that
data are not lost or corrupted.

TCP controls how much data it transmits over a network
by utilising a sender-side congestion window and a receiver
side advertised window. TCP cannot send more data than
the congestion window allows, and it cannot receive more
data than the advertised window allows [2]. The size of the
congestion window depends upon the instantaneous congestion
conditions in the network. When the network experiences
heavy traffic conditions, the congestion window is small.
When the network is lightly loaded the congestion window
becomes larger. How and when the congestion window is
adjusted depends on the form of congestion control that the
TCP protocol uses.

Congestion control algorithms rely on various indicators to
determine the congestion state of the network. For example,
packet loss is an implicit indication that the network is over-
loaded and that the routers are dropping packets due to limited
buffer space. Routers can set flags in a packet header to inform
the receiving host that congestion is about to occur [16]. The
receiving host can then explicitly inform the sending host
to reduce its sending rate. Other congestion control methods
include measuring packet round trip times (RTTs) and packet
queuing delays Some congestion control mechanisms allow
for unfair usage of network bandwidth, while other congestion
control mechanisms are able to share bandwidth equally.

Several congestion control mechanisms are available for
use by the Linux kernel namely: TCP-HighSpeed (H-TCP),

TCP-Hybla, TCP-Illinois, TCP Low Priority (TCP-LP), TCP-
Vegas, TCP-Reno, TCP Binary Increase Congestion (TCP-
BIC), TCP-Westwood, Yet Another Highspeed TCP (TCP-
YeAH), TCP-CUBIC and Scalable TCP. The Linux socket
interface allows the user to change the type of congestion
control a TCP connection uses by setting the appropriate
socket option.

Comparisons of TCP-Reno, TCP-Vegas and TCP-Westwood
have been reported (see for example [15], [6], [8] and the
references therein) where the experiments were conducted on
testbeds or using ns2 simulations. Our intention is to compare
many, readily available, significant TCP variants.

The remainder of this paper is organised as follows. Sec-
tion II describes the various TCP variants. A description of
the experiments is given in Section III. The results of the ex-
periments are discussed in Section IV. Section V summarises
the presented results.

II. TCP VARIANTS INVESTIGATED

Much of the information in this Section was obtained from
en.wikipedia.org. The source references are listed in the
text.

TCP-Reno uses slow start, congestion avoidance, and fast
retransmit triggered by triple duplicate ACKs. Reno uses
packet loss to detect network congestion [1].

TCP-BIC. The Binary Increase Congestion (BIC) control
is an implementation of TCP with an optimized congestion
control algorithm for high speed networks with high latency.
BIC has a unique congestion window algorithm which uses
a binary search algorithm in an attempt to find the largest
congestion window that will last the maximum amount of
time [17].

TCP-CUBIC is a less aggressive and more systematic
derivative of TCP-BIC, in which the congestion window is
a cubic function of time since the last packet loss [9], with
the inflection point set to the window prior to the congestion
event. There are two components to window growth. The first
is a concave portion where the window quickly ramps up
to the window size as it was before the previous congestion
event. Next is a convex growth where CUBIC probes for more
bandwidth, slowly at first then very rapidly. CUBIC spends
a lot of time at a plateau between the concave and convex
growth region which allows the network to stabilize before
CUBIC begins looking for more bandwidth.

HighSpeed TCP (H-TCP) is a modification of the TCP-
Reno congestion control mechanism for use with TCP connec-
tions with large congestion windows. H-TCP is a loss-based
algorithm, using additive-increase/multiplicative-decrease to
control the TCP congestion window [7]. It is one of many
TCP congestion avoidance algorithms which seeks to increase
the aggressiveness of TCP on high bandwidth-delay product
(BDP) paths, while maintaining ‘TCP friendliness’ for small
BDP paths. H-TCP increases its aggressiveness (in particular,
the rate of additive increase) as the time since the previous
loss increases [12]. This avoids the problem encountered by
TCP-BIC of making flows more aggressive if their windows
are already large. Thus new flows can be expected to converge
to fairness faster under H-TCP than TCP-BIC.

TCP-Hybla was designed with the primary goal of coun-
teracting the performance unfairness of TCP connections with
longer RTTs. TCP-Hybla is meant to overcome performance
issues encountered by TCP connections over terrestrial and
satellite radio links. These issues stem from packet loss due to
errors in the transmission link being mistaken for congestion,
and a long RTT which limits the size of the congestion window
[4].

TCP-Illinois is targeted at high-speed, long-distance net-
works. TCP-Illinois is a loss-delay based algorithm, which
uses packet loss as the primary congestion signal to determine
the direction of window size change, and uses queuing delay as
the secondary congestion signal to adjust the pace of window
size change [13].

TCP Low Priority (TCP-LP) is a congestion control
algorithm whose goal is to utilize only the excess network
bandwidth as compared to the ‘fair share’ of bandwidth as
targeted by TCP-Reno. The key mechanisms unique to TCP-
LP congestion control are the use of one-way packet delays
for congestion indications and a TCP-transparent congestion
avoidance policy [11].

TCP-Vegas emphasizes packet delay, rather than packet
loss, as a signal to determine the rate at which to send packets.
Unlike TCP-Reno which detects congestion only after it has
happened via packet drops, TCP-Vegas detects congestion at
an incipient stage based on increasing RTT values of the
packets in the connection. Thus, unlike Reno, Vegas is aware
of congestion in the network before packet losses occur [1].

The Vegas algorithm depends heavily on the accurate cal-
culation of the Base RTT value. If it is too small then the
throughput of the connection will be less than the bandwidth
available, while if the value is too large then it will overrun the
connection. Vegas and Reno cannot co-exist. The performance
of Vegas degrades because Vegas reduces its sending rate
before Reno as it detects congestion earlier and hence gives
greater bandwidth to co-existing TCP-Reno flows.

TCP-Westwood is a sender-side-only modification to TCP
Reno that is intended to better handle large bandwidth-delay
product paths with potential packet loss due to transmission
or other errors, and with dynamic load. TCP Westwood relies
on scanning the ACK stream for information to help it better
set the congestion control parameters namely the Slow Start

Threshold ssthresh, and the Congestion Window cwin [14].
TCP-Westwood estimates an ‘eligible rate’ which is used by
the sender to update ssthresh and cwin upon loss indication,
or during its ‘agile probing’ phase which is a proposed
modification to the slow start phase. In addition, a scheme
called Persistent Non Congestion Detection was devised to
detect a persistent lack of congestion and induce an agile
probing phase to utilize large dynamic bandwidth.

Yet Another Highspeed TCP (TCP-YeAH) is a sender-side
high-speed enabled TCP congestion control algorithm which
uses a mixed loss/delay approach to compute the congestion
window [3]. The goal is to achieve high efficiency, a small RTT
and Reno fairness, and resilience to link loss while keeping
the load on the network elements as low as possible.

Scalable TCP is a simple change to the traditional TCP
congestion control algorithm (RFC2581) which dramatically
improves TCP performance in high speed wide area net-
works. Scalable TCP changes the algorithm to update TCP’s
congestion window to the following: cwnd:=cwnd+0.01

for each ACK received while not in loss recovery and
cwnd:=0.875*cwnd on each loss event [10].

III. EXPERIMENTS PERFORMED

Experiments were carried out using client and server pro-
grams. A host running a client program generates data which
are sent over the network to a host running the server program.
The server receives data from multiple clients. Each client
uses a different congestion control algorithm. The amount
of data received from the clients is measured in megabits
per second and is presented as a graph which shows how
much bandwidth the client utilises. The average of a client’s
bandwidth measurements determines it’s bandwidth usage. In
these experiments, the highest possible throughput on the
network is slightly over 100 Mbps.

The experiments were run on the Stellenbosch University
local area network. All hosts involved were located on the
same network segment. The TCP segments did not traverse
any routers. The intention was to initially keep the network
topology as simple as possible. If several TCP variants could
not co-exist on a local area network then they would not be
viable on a long haul network.

All experiments were carried out in the same manner, and all
TCP variants were tested in pairs. Host A (a client) transmits
data to host B (the server), after which host C (another client)
starts to send data to host B. Thus the two client hosts do not
begin their data transmissions simultaneously, there is always
a short delay between one client beginning its transmission
and the next client beginning its transmission. The first client
to start transmission utilises the network without restraint,
and is only required to share bandwidth when an additional
client starts transmission. This was found to have an impact
on the behaviour of certain TCP variants, as their bandwidth
utilisation depends upon the order in which they were started
(see below).

Each TCP congestion control algorithm was tested against
all the other TCP algorithms, including itself.

TABLE I
THROUGHPUT COMPARISON OF TCP VARIANTS.

Vegas HTCP Westwood Illinois BIC Scalable LP Reno CUBIC
Vegas 49,50 10,95 8,95 6,97 13,91 8,95 9,95 23,95 10,95 10,94 9,94 10,94 Vegas
HTCP 95,10 52,52 19,86 38,65 41,62 41,64 64,40 64,40 65,38 66,37 66,37 67,37 HTCP

Westwood 95, 8 86,19 46,57 69,34 84,19 80,23 89,15 89,14 90,13 90,14 90,13 91,13 Westwood
Illinois 97, 6 65,38 34,69 13,89 93,10 88,22 94, 9 93,10 95, 7 70,33 95,8 94,10 Illinois

BIC 91,13 62,41 19,84 53,51 54,49 55,51 73,30 73,30 74,29 75,28 75,28 77,26 BIC
Scalable 95, 8 62,42 23,80 50,53 51,55 51,52 71,32 72,31 76,27 74,29 77,26 77,26 Scalable

95, 9 40,64 15,89 36,68 30,73 32,71 54,50 58,45 61,42 63,40 62,40 64,40
95,23 40,64 19,84 37,67 30,73 31,72 45,58 52,51 53,50 57,46 54,49 54,49

LP 95,10 38,65 13,90 33,70 29,74 27,76 42,61 50,53 53,50 54,48 50,53 55,47 LP
94,10 37,66 14,90 33,70 28,75 29,74 40,63 46,57 48,54 52,51 49,54 53,50

Reno 94, 9 37,66 15,89 31,73 28,75 26,77 40,62 49,54 53,50 54,49 51,52 54,49 Reno
CUBIC 94,10 37,67 13,91 33,70 26,77 26,77 40,64 49,54 47,55 50,53 49,54 47,55 CUBIC

HighSpeed YeAH Hybla

HighSpeed HighSpeed
YeAH YeAH

Hybla Hybla

Various TCP congestion control algorithms are available in
the Linux kernel as modules. One can force Linux to use a
specific congestion control algorithm, but one does not wish
to be limited to only one type of congestion control algorithm
at any time. Fortunately, Linux makes provision for this. The
socket interface allows one to set socket options that allows
the use of a different TCP congestion control algorithm for
each TCP socket that is created. Superuser rights are required
to select the congestion control algorithm and to set the socket
options.

IV. RESULTS

Table I presents the average throughputs of the TCP vari-
ants. Thus when a Westwood TCP connection is opened fol-
lowed by an HTCP connection, Westwood attains an average
throughput of 86 Mbps and HTCP 19 Mbps. When an HTPC
connection is opened followed by a Westwood connection, the
throughputs remain the same, HTCP averages 19 Mbps and
Westwood 86 Mbps. When an Illinois connection is opened
followed by a BIC connection, Illinois averages 93 Mbps
and BIC 10 Mbps. But when a BIC connection is opened
followed by an Illinois connection, BIC averages 53 Mbps
and Illinois 51 Mbps. Table I shows (the darkly shaded entries)
that the throughput of TCP-Illinois sometimes depends upon
whether Illinois was started before or after the competing TCP
connection. Table I shows (the lightly shaded entries) that
many TCP variants cannot co-exist, but some (the unshaded
entries) put.

Table II shows that HTCP can co-exist with itself. HTCP
has a lower throughput than Illinois, BIC, Westwood, and
Scalable. HTCP has a higher throughput than Hybla, LP,
Vegas, Reno, YeAH, CUBIC and Highspeed. Against these
it maintains an average throughput in the range of 64 to 67
Mbps. The exception is Vegas, against which HTCP has an
average throughput of about 95 Mbps.

Table III shows that Hybla can co-exist with itself, LP, Reno,
CUBIC, and YeAH. Hybla performs badly against Illinois,
BIC, Westwood, and Scalable. Vegas cannot co-exist with
Hybla.

TABLE II
HTCP VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
HTCP Other TCP variants

52 52 HTCP
19 86 Westwood
38 65 Illinois
41 62 BIC
41 64 Scalable
64 40 YeAH
64 40 Highspeed
65 38 LP
66 37 Hybla
66 37 Reno
67 37 CUBIC
95 10 Vegas

TABLE III
HYBLA VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
Hybla Other TCP variants

46 57 YeAH
48 54 LP
49 54 Reno
52 51 Hybla
53 50 CUBIC
14 90 Westwood
28 75 BIC
29 74 Scalable
33 70 Illinois
37 66 HTCP
40 63 Highspeed
94 10 Vegas

Table IV shows that Illinois is TCP unfriendly and cannot
fairly share bandwidth with any of the other TCP variants
that were investigated. The only variant to maintain a higher
average throughput than Illinois is Westwood. Illinois cannot
co-exist even with itself, something that all the TCP variants
are capable of.

TABLE IV
ILLINOIS VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
Illinois Other TCP variants

13 89 Illinois
34 69 Westwood
65 38 HTCP
70 33 Hybla
88 22 Scalable
93 10 BIC
93 10 YeAH
94 9 CUBIC
94 9 Highspeed
95 7 LP
95 8 Reno
97 6 Vegas

Section III disclosed that in some cases the order in
which clients start their transmission influences the bandwidth
utilised. This applies to TCP Illinois. Fig. 1 shows that if
TCP-Illinois is allowed to begin transmission, and afterwards
a TCP-Yeah client begins transmitting data, the Illinois con-
nection maintains a high average throughput.

Fig. 1. Illinois begins transmitting 10 seconds before YeAH. Illinois
maintains an average throughput of 93 Mbps, while YeAH maintains a low
average throughput of 10 Mbps.

Fig. 2 shows that if the order of transmission is reversed,
TCP-Yeah attains a much higher average throughput, although
still less than TCP-Illinois.

Our experiments show that a TCP-Illinois connection, if
started first, has a higher throughput than other TCP connec-
tions that are started later, with the exception of Westwood and
Vegas, whose mean throughput remains the same regardless of
the order in which they start transmitting.

Table V shows that LP can co-exist with itself, Hybla, Reno,
YeAH, and CUBIC. As is the case with Hybla, LP fares badly
against Illinois, BIC, Westwood, and Scalable.

Table VI shows that TCP-Vegas can co-exist with itself.
Vegas performs poorly against all the other TCP variants,

Fig. 2. YeAH begins transmitting before Illinois. YeAH now has an average
throughput of 37 Mbps, whilst Illinois has an average throughput of 67 Mbps.

TABLE V
LP VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
LP Other TCP variants
50 53 Reno
50 53 YeAH
53 50 LP
54 48 Hybla
55 47 CUBIC
13 90 Westwood
27 76 Scalable
29 74 BIC
33 70 Illinois
38 65 HTCP
42 61 Highspeed
95 10 Vegas

TABLE VI
VEGAS VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
Vegas Other TCP variants

49 50 Vegas
6 97 Illinois
8 95 Westwood
8 95 Scalable
9 94 Reno
9 95 Highspeed
10 95 HTCP
10 94 Hybla
10 95 LP
10 94 CUBIC
13 91 BIC
23 95 YeAH

achieving an average throughput of between 8 and 13 Mbps,
depending on which TCP variant it competes against. TCP-
Vegas cannot co-exist with other TCP variants.

Table VII shows that TCP-Reno can co-exist with itself,

TABLE VII
RENO VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
Reno Other TCP variants

49 54 YeAH
51 52 Reno
53 50 LP
54 49 CUBIC
54 49 Hybla
15 89 Westwood
26 77 Scalable
28 75 BIC
31 73 Illinois
37 66 HTCP
40 62 Highspeed
94 9 Vegas

Hybla, LP, YeAH, and CUBIC. Again, as is that case with
with Hybla and LP, Reno fares badly against Illinois, BIC,
Westwood, and Scalable.

TABLE VIII
BIC VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
BIC Other TCP variants
53 51 Illinois
54 49 BIC
55 51 Scalable
19 84 Westwood
62 41 HTCP
73 30 YeAH
73 30 Highspeed
74 29 LP
75 28 Hybla
75 28 Reno
77 26 CUBIC
91 13 Vegas

Table VIII shows that BIC can co-exist with itself, Scal-
able and Illinois. BIC has a high average throughput when
compared to Hybla, LP, Vegas, Reno, CUBIC and Highspeed.
BIC can co-exist with Illinois, but Illinois cannot co-exist with
BIC: it depends upon the order in which the BIC and Illinois
streams are started.

Table IX shows that Westwood is very aggressive. The
average throughput of Westwood is almost always above 80
Mbps, allowing very little bandwidth for competing TCP
connections. The only exception is Westwood which can co-
exist with itself.

Table X shows that TCP-YeAH can co-exist with itself,
Hybla, LP, Reno, CUBIC, and to a lesser degree, Highspeed.
As was the case with Hybla, LP, and Reno TCP-YeAH fares
badly against Illinois, BIC, Westwood, and Scalable.

Table XI shows that CUBIC can co-exist with itself, Hybla,
LP, Reno, and YeAH. CUBIC fares badly against Illinois, BIC,
Westwood, and Scalable.

TABLE IX
WESTWOOD VS. OTHER TCP VARIANTS.

Mean throughput (Mbps)
Westwood Other TCP variants

46 57 Westwood
69 34 Illinois
80 23 Scalable
84 19 BIC
86 19 HTCP
89 14 YeAH
89 15 Highspeed
90 13 Reno
90 14 Hybla
91 13 CUBIC
90 13 LP
95 8 Vegas

TABLE X
YEAH VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
YeAH Other TCP variants

45 58 Highspeed
52 51 YeAH
53 50 LP
54 49 Reno
54 49 CUBIC
57 46 Hybla
19 84 Westwood
30 73 BIC
31 72 Scalable
37 67 Illinois
40 64 HTCP
95 23 Vegas

TABLE XI
CUBIC VERSUS OTHER TCP VARIANTS.

Mean throughput (Mbps)
CUBIC Other TCP variants

47 55 CUBIC
47 55 LP
49 54 Reno
49 54 YeAH
50 53 Hybla
13 91 Westwood
26 77 BIC
26 77 Scalable
33 70 Illinois
37 67 HTCP
40 64 Highspeed
94 10 Vegas

Table XII shows that Highspeed shares bandwidth well
with itself and reasonably well with YeAH. TCP variants like
Illinois, Westwood, BIC, and Scalable tend to use most of the
bandwidth when competing against Highspeed.

Table XIII shows that Scalable can co-exist with itself, BIC
and Illinois. As noted previously, the behaviour of Illinois

TABLE XII
HIGHSPEED VS. OTHER TCP VARIANTS.

Mean throughput (Mbps)
Highspeed Other TCP variants

54 50 Highspeed
58 45 YeAH
15 89 Westwood
30 73 BIC
32 71 Scalable
36 68 Illinois
40 64 HTCP
61 42 LP
62 40 Reno
63 40 Hybla
64 40 CUBIC
95 9 Vegas

TABLE XIII
SCALABLE VS. OTHER TCP VARIANTS.

Mean throughput (Mbps)
Scalable Other TCP variants

50 53 Illinois
51 52 Scalable
51 55 BIC
23 80 Westwood
62 42 HTCP
71 32 Highspeed
74 29 Hybla
76 27 LP
77 26 Reno
72 31 YeAH
77 26 CUBIC
95 8 Vegas

depends upon the order in which the Scalable and Illinois
streams are started. Scalable is very aggressive and dominates
the amount of available bandwidth when competing against
other TCP variants. The only exception to this is Westwood,
which maintains a very high average throughput against Scal-
able.

V. CONCLUSION

Comparing the congestion control algorithms to each other
shows that whilst some of the algorithms can co-exist, others
cannot. TCP-Vegas consistently had a low mean throughput
of about 10 Mbps against all other TCP variants. TCP-Vegas
is perhaps the algorithm that is most sensitive to network
congestion, as it gives up bandwidth the most easily.

The most aggressive algorithms are HTCP, Westwood, Illi-
nois, BIC and Scalable. Of these four, Westwood is the most
greedy, taking nearly all available bandwidth for itself. It is
perhaps the most insensitive to congestion on the network.

YeAH, HighSpeed, LP, Hybla, Reno, CUBIC, and Reno
share the available bandwidth more or less equally among
themselves.

Most of the congestion control algorithms that were investi-
gated in this paper are intended for high speed networks with

large RTTs namely HTCP, Illinois, Scalable, BIC, CUBIC,
YeAH, and HighSpeed. Since these algorithms all try to exploit
large amounts of bandwidth by rapidly increasing the size
of their congestion windows, it is to be expected that they
would not share bandwidth well with other TCP connections.
The exception is CUBIC and YeAH, which form part of
the well-behaved group. These high speed congestion control
algorithms seem particularly effective at not overwhelming
the network, and sharing available bandwidth with other TCP
connections.

REFERENCES

[1] Omar AitHellal and Eitan Altman. Analysis of tcp vegas
and tcp reno. Telecommunication Systems, 15:381–404, 2000.
10.1023/A:1019159332202.

[2] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681 (Draft Standard), September 2009.

[3] Andrea Baiocchi, Angelo P. Castellani, and Francesco Vacirca. Yeah-tcp:
Yet another highspeed tcp. In 5th International Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet), March 2007.

[4] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for
heterogeneous networks. International Journal of Satellite Communica-
tions and Networking, 22, 2004.

[5] Douglas E. Comer. Internetworking with TCP/IP Principles, Protocols
and Architectures. Prentice Hall, New Jersey, USA, fourth edition, 2000.

[6] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe,
reno and sack tcp. SIGCOMM Comput. Commun. Rev., 26(3):5–21,
July 1996.

[7] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649
(Experimental), December 2003.

[8] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and
comparison of westwood+, new reno, and vegas tcp congestion control.
SIGCOMM Comput. Commun. Rev., 34(2):25–38, April 2004.

[9] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July
2008.

[10] Tom Kelly. Scalable tcp: improving performance in highspeed wide area
networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[11] Aleksandar Kuzmanovic and Edward W. Knightly. Tcp-lp: low-priority
service via end-point congestion control. IEEE/ACM Trans. Netw.,
14(4):739–752, August 2006.

[12] Douglas Leith and Robert Shorten. H-tcp: Tcp for high-speed and long-
distance networks. In 2nd International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet), February 2004.

[13] Shao Liu, Tamer Başar, and R. Srikant. Tcp-illinois: a loss and delay-
based congestion control algorithm for high-speed networks. In Pro-
ceedings of the 1st International Conference on Performance Evaluation
Methodolgies and Tools, valuetools ’06, New York, NY, USA, 2006.
ACM.

[14] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, MobiCom ’01, pages
287–297, New York, NY, USA, 2001. ACM.

[15] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean Walrand.
Analysis and comparison of tcp reno and vegas. In In Proceedings of
IEEE Infocom, pages 1556–1563, 1999.

[16] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168 (Proposed Standard),
September 2001. Updated by RFCs 4301, 6040.

[17] Lisong Xu, K. Harfoush, and Injong Rhee. Binary increase congestion
control (bic) for fast long-distance networks. In INFOCOM 2004.
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 4, pages 2514 – 2524 vol.4, March
2004.

Arnè Esterhuizen is a BSc (Honours) student at the Department of Mathemat-
ical Science (Computer Science Division) at the University of Stellenbosch.
Anthony Krzesinski is a Professor of Computer Science at the University of
Stellenbosch, South Africa. His research interests centre on the performance
evaluation of telecommunication networks.

