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Abstract

In recent years, Digital subscriber line (DSL) technology has been gaining popularity as a high speed
network access technology, capable of the delivery of multimedia services. A major impairment for
DSL is impulse noise in the telephone line. However, evaluating the data errors caused by this noise is
not trivial due to its complex statistical nature, which until recently had not been well understood, and
the complicated error mitigation and framing techniques used in DSL systems. This thesis presents a
novel analysis of the impact of impulse noise and the DSL framing parameters on transmission errors,
building on a recently proposed impulse noise model. It focuses on errors at higher protocol layers, such
as asynchronous transfer mode (ATM), in the most widely used DSL version, namely Asymmetric DSL
(ADSL).

The impulse noise is characterised statistically through its amplitudes, duration, inter-arrival times,
and frequency spectrum, using the British Telecom / University of Edinburgh / Deutsche Telekom
(BT/UE/DT) model. This model is broadband, considers both the time and the frequency domains,
and accounts for the impulse clustering. It is based on recent measurements in two different telephone
networks (the UK and Germany) and therefore is the most complete model available to date and suited
for DSL analysis. A new statistical analysis of impulse noise spectra from DT measurements shows
that impulse spectra can be modelled with three spectral components with similar bandwidth statistical
distributions. Also, a novel distribution of the impulse powers is derived from the impulse amplitude
statistics.

The performance of a generic ADSL modem is investigated in an impulse noise and crosstalk envi-
ronment for different bit rates and framing parameters. ATM cell and ADSL frame error rates, and
subjective MPEG2 video quality are used as performance metrics. A new modification of a bit loading
algorithm is developed to enable stable convergence of the algorithm with trellis coding and restricted
subtone constellation size. It is shown that while interleaving brings improvement if set at its maximum
depth, at intermediate depths it actually worsens the performance of all considered metrics in compari-
son with no interleaving. No such performance degradation is caused by combining several symbols in a
forward error correction (FEC) codeword, but this burst error mitigation technique is only viable at low
bit rates. Performance improvement can also be achieved by increasing the strength of FEC, especially
if combined with interleaving. In contrast, trellis coding is ineffective against the long impulse noise
error bursts. Alien as opposed to kindred crosstalk degrades the error rates and this is an important issue
in an unbundled network environment. It is also argued that error free data units is a better performance
measure from a user perspective than the commonly used error free seconds.

The impact of impulse noise on the errors in DSL systems has also been considered analytically. A
new Bernoulli-Weibull impulse noise model at symbol level is proposed and it is shown that other mod-
els which assume Gaussian distributed impulse amplitudes or Rayleigh distributed impulse powers give
overly optimistic error estimates in DSL systems. A novel bivariate extension of the Weibull impulse
amplitudes is introduced to enable the analysis of orthogonal signals. Since an exact closed-form ex-
pression for the symbol error probability of multi-carrier QAM assuming Bernoulli-Weibull noise model
does not exist, this problem has been solved numerically. Multi-carrier QAM is shown to perform better
at high signal-to-noise ratio (SNR), but worse at low SNR than single carrier QAM, in both cases be-
cause of the spreading of noise power between subcarriers. Analytical expressions for errors up to frame
level in the specific case of ADSL are then derived from the impulse noise model, with good agreement
with simulation results. The Bernoulli-Weibull model is applied to study the errors in single-pair high-
speed DSL (SHDSL). The performance of ADSL is found to be better when the burst error mitigation
techniques are used, but SHDSL has advantages if low bit error rate and low latency are required.
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Chapter 1
Introduction

This thesis is concerned with the impact of impulse noise in the local loop and resulting data

errors in digital subscriber line (DSL) systems. DSL is a technology that provides transport

of high-bit-rate digital information over telephone subscriber lines. The telephone network

reaches virtually every home and workplace in the industrialised world, and the majority of

the lines are capable of supporting DSL without the need for major modifications to the outside

plant facilities [6]. The vast potential customer base and the economic advantages of leveraging

the existing loop infrastructure simply by enabling it with the right technology creates a very

strong business case for the promotion of DSL. This factor, combined with the exponential

growth of digital communications and required bandwidth, has lead to the popularity and ever

increasing demand for this technology.

Motivation

It has been recognised since the first DSL field trials that impulse noise, alongside other tele-

phone line impairments such as attenuation and crosstalk, is a major limiting factor for the

reach and achievable bit rate of DSL systems [7]. Impulse noise consists of energy spikes with

random amplitudes and spectra, and which occur in a random fashion. It can be induced in the

loop by both man-made and natural electromagnetic events, e.g. communication equipment,

electrical appliances, vehicles, lightning discharges etc.

Because of its non-stationary unpredictable nature, impulse noise does not lend itself easily

to a statistical description. Although the earliest impulse noise studies date from the 1960s

[8, 9], it is only recently that a model was proposed [3] which is particularly suited for DSL

analysis. This model, developed by British Telecom / University of Edinburgh / Deutsche

Telekom (BT/UE/DT) teams, has been derived from broadband noise measurements made in

the telephone networks in the UK and Germany, and is the most complete impulse noise model

presented to date.

Evaluating the impact of impulse noise on data transmitted over DSL is not straightforward
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due to both the complexity of the impulse noise statistics and the use of sophisticated digital

transmission techniques in DSL to compensate for the impairments of the telephone lines. Each

DSL technology has a unique organisation of the physical layer, which may differ significantly

from the others.

Of particular interest is asymmetric DSL (ADSL), since it is the most widely used DSL ver-

sion, but it has one of the most complicated framing formats among the DSL technologies.

ADSL is based on discrete multi-tone (DMT) modulation, employs numerous noise mitigation

techniques and sophisticated framing, and can potentially achieve data rates of up to 9 Mbps

downstream (network to subscriber) and 1 Mbps upstream (subscriber to network) [1]. The

reliable delivery of high-bit-rate services other than simple Internet to a larger proportion of

the loop plant is still an open question for ADSL, despite its wide deployment. The results

from the analysis of ADSL are also relevant to the next generation of DSL technologies - very

high-speed DSL (VDSL), since some VDSL versions are expected to have a physical layer or-

ganisation similar to that of ADSL [10]. Therefore, ADSL is the main focus of attention in this

work and is studied in detail both theoretically and through simulation.

In comparison with ADSL, single-pair high-speed DSL (SHDSL) has a much simpler physical

layer organisation [2]. It uses trellis-coded pulse amplitude modulation (TC-PAM) and offers

up to 2.3 Mbps symmetric (both downstream and upstream) service. SHDSL is expected to

prove particularly popular with business users, and will be discussed briefly in this study.

Another point of difficulty in evaluating the impulse noise impact on data transmission is that

the user requirements to link performance are usually related to higher level protocols and

applications. DSL technology may be used for voice, data, or integrated voice/data access,

where data usually refers to TCP/IP, asynchronous transfer mode (ATM), frame relay or other

packet protocols. Other applications include video transmission, and increasingly, gaming.

From a user perspective, metrics such as ATM cell or IP packet error rates, or video image

quality, are more representative of the system performance than simple bit or byte error rates.

Contributions

The aim of this work is to investigate the data errors caused by impulse noise in DSL (with

emphasis on ADSL) and how these errors affect higher layers of the protocol stack. In order to

achieve this, two approaches have been followed - simulation and theoretical analysis.
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The simulation analysis in this work combines a model of a generic ADSL modem [1, 11]

with impulse noise [3] and crosstalk models. The ADSL modem implementation supports all

framing functions relevant to error mitigation, i.e. interleaving, forward error correction (FEC),

trellis coding, and combining several ADSL frames in one FEC codeword. The aims pursued in

the simulations are to evaluate the impact of impulse noise on higher level protocols and to find

appropriate framing parameters for efficient noise mitigation. For this purpose, simulations are

run for different values of the framing parameters, bit rates, and crosstalk scenarios. The per-

formance metrics used are ATM cell and ADSL frame error rates and error-free intervals, and

subjective MPEG2 bit stream video quality. These metrics have been chosen as representative

of the errors in higher level protocols and end user applications.

The simulation results show that interleaving should either be set to maximum if high latency

can be tolerated, or not used at all for low latency requirements. Intermediate interleaving

depths only worsen the error performance of higher layers. Combining multiple ADSL frames

in one FEC codeword is a better alternative to interleaving, but under the ADSL standard’s

constraints it can only bring benefits at low bit rates. FEC should be used at all times, whereas

trellis coding as implemented in ADSL is not efficient against impulse noise. One impulse event

may cause a train of errored ATM cells, between which there are “good” cells that can be used

by certain applications. Therefore, a measure of error-free intervals between errored data blocks

is more appropriate from the point of view of higher layers than error-free seconds. However,

the headers of the ATM cells are affected less by impulse noise than the ATM payloads, which

may have implications in payload error detection if such “good” cells were to be discovered

and used. Also, it is shown that crosstalk from alien systems may worsen the error performance

and should be taken into account in an unbundled local loop.

Analytically, the impact of impulse noise in telephone lines at symbol level is evaluated using a

Bernoulli-Weibull impulse noise model. Other impulse noise models, which assume Gaussian

or Rayleigh distributed impulse amplitudes or powers [12–14], give overly optimistic results

if applied to local loop analysis. Although the Bernoulli-Weibull model is not mathematically

tractable in the case of the multi-carrier quadrature amplitude modulation (QAM), which is

used in ADSL, it is possible to evaluate the symbol errors numerically. Although the multi-

carrier QAM signal performs better in impulse noise at high single-to-noise ratios (SNR), it has

a worse symbol error probability at low SNR in comparison with single carrier QAM. Building

on the Bernoulli-Weibull model and the temporal characteristics of impulse noise, the higher
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level errors in ADSL and SHDSL are analysed. When compared to SHDSL, ADSL downstream

has superior performance for maximum interleaving depth, but is worse if a low latency and

low byte error rate is required.

The achievements of the work described in this thesis are fourfold. Firstly, work on the impulse

noise model has lead to new results for the spectral statistics of impulses and novel extensions

of the impulse amplitude model to two dimensions and to a distribution of the impulse powers.

Secondly, separate from the impulse noise issues, a new modification of a bit loading algorithm

has been developed, which offers stable convergence of the algorithm with a trellis coding con-

stellation expansion and a constraint on the minimum number of bits per constellation. Thirdly,

the error performance at higher layers of ADSL in impulse noise has been analysed through

simulation, and conclusions about the optimum parameter settings and the error patterns at

higher layers have been made. And finally, a novel framework for the analysis of DSL systems

in impulse noise has been proposed, and ADSL and SHDSL have been considered as an exam-

ple. The latter two contributions will also be applicable to VDSL systems with modulation and

framing similar to that of ADSL. In summary, the impact of impulse noise in DSL systems is

significant and the best approach to its mitigation depends on the requirements of the end user

application.

1.1 Thesis layout

The remainder of this chapter describes the layout of the thesis, which is organised into a further

five chapters.

Chapter 2 starts with a brief discussion of high-speed access technologies and the evolution of

digital subscriber line systems, to provide a general description of the technological solutions

and potential problems in DSL transmission. It then presents the various data types and protocol

stacks that may be found in DSL systems, to demonstrate the diversity of data as viewed from a

user perspective. Three common or promising DSL systems are then examined, concentrating

on the most widely used technology - ADSL. The complexity of ADSL modulation and framing

is demonstrated, followed by an overview of SHDSL and VDSL. It is concluded that there is

still a requirement for the study of the impact of impulse noise on the errors at higher layers in

DSL systems.

In Chapter 3, the background to the various telephone line noise impairments is presented.
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Earlier impulse noise studies are outlined, followed by a discussion of the BT/UE/DT impulse

noise model. A new analysis of the statistics of impulse spectra from DT measurements is

presented, which can be used for refining the impulse noise model to generate impulses with

a more complex spectral contents. Also, the impulse amplitudes statistics are used to derive a

novel distribution of the impulse powers. The problem of crosstalk generated by the various

DSL technologies is then considered with a special attention to summing crosstalk from mixed

sources, which is a likely scenario in an unbundled telephone network. The chapter concludes

with some comments about radio frequency interference and its impact on DSL.

Chapter 4 deals with simulation analysis of the errors caused by impulse noise in ADSL down-

stream. The simulation platform is described in detail, including a new modification of a bit

loading algorithm to ensure convergence with simultaneous trellis code constellation expansion

and constraints on the minimum number of bits per constellation. The impact of various ADSL

framing parameters on impulse noise mitigation is investigated, using as performance measures

ATM cell errors, ADSL frame errors, and MPEG2 video quality. Conclusions about the effi-

ciency of the various noise mitigation techniques in ADSL for user applications with different

requirements are drawn. The error patterns in an ATM stream and their effect on different

applications are also discussed.

In Chapter 5, a Bernoulli-Weibull impulse noise model at symbol level is introduced to allow

for theoretical analysis of the impact of impulse noise on DSL systems. A comparison with

other models assuming Gaussian distributed impulse amplitudes shows that they give an overly

optimistic error estimates when used for DSL analysis. A numerical method to find the error

probability of multi-carrier QAM is proposed to overcome the fact that no closed-form ana-

lytical expression for the Bernoulli-Weibull model exists. A comparison between single and

multi-carrier QAM is then presented, showing that the latter performs better at high SNR, and

the former - at low SNR. A framework for calculating the errors at higher levels in ADSL

and SHDSL is developed, and the advantages and disadvantages of these DSL technologies for

different user requirements are underlined.

Finally, in Chapter 6, the main contributions of the thesis are highlighted, certain limitations of

the work are identified, and areas for possible further work are suggested.
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Chapter 2
Background to xDSL systems

2.1 Introduction

Digital subscriber line (DSL) technologies enable transmission of high-speed data to and from

customer premises over existing unshielded twisted pair (UTP) telephone networks. These net-

works were often built decades ago and were designed to carry only voice within a bandwidth

of less than 4 kHz. The local loop as a broadband transmission media is therefore strongly

impaired by noise and attenuation. In order to mitigate the line impairments, the DSL tech-

nologies (collectively referred to as xDSL) have a complicated organisation in their physical

layer, which differs significantly for each of the various DSL systems. At higher layers xDSL

systems are expected to carry various types of data ranging from direct bit stream to complex

packet protocols. The impact of line impairments on the data and consequently the services

transmitted over xDSL is the motivation behind this work.

After an overview of the various access media and the evolution of DSL technologies, this

chapter will concentrate on the specifics of the physical layer of the most common DSL systems.

Besides the already accepted DSL standards, proposals for new standards are also discussed.

Attention is also given to the possible data formats carried over DSL.

2.2 High-speed access technologies

The telephone line is only one of four principal technologies for transmission of high-speed

data to and from customer premises. The alternative media are coaxial cable, optical fibre and

wireless. There is certainly no universal transmission medium that best serves all applications

and locations, as can be seen from the summary of the advantages and weaknesses of different

media below.

Telephone loop. Telephone lines have a very high penetration among the population in countries

with developed communications infrastructure. Therefore DSL potentially has a very large

6



Background to xDSL systems

customer base. However, typically between 5% and 10% of the total loop plant are unsuitable

for DSL due to excessive loop length, presence of load coils, or because a large number of

bridge taps exist on the line. DSL also suffers from noise and interference on the line and has a

poor broadcast efficiency.

Coaxial cable. Coaxial cable networks were originally installed for unidirectional video broad-

cast systems but are being increasingly upgraded and used for interactive services such as voice

and data. Cable providers have had some success by bundling broadcast, data and voice ser-

vices. A drawback of coaxial cable networks is that they reach mainly residential customers

but much fewer businesses, so the coaxial cable customer base is restricted.

Optical fibre. Optical fibres have an impressive bandwidth-distance product and can deliver

large bit rates over large distances. However, economics and logistical challenges hold back

their wide deployment. Fibre optic lines are now common to major business sites and are on

the increase in residential areas. However, entirely optical networks are still rare and the last

hundreds meters normally use copper technologies such as DSL, coaxial cables, or Ethernet.

Wireless. Wireless access offers higher customer location flexibility than cable access solutions.

Wireless may also be preferable in areas where building cable infrastructure can be too costly,

such as remote areas or busy cities. However, wireless access is restricted by limited radio

spectrum bandwidth and faces challenges of placing radio transceivers (either on earth or in

orbit). Wireless links are also subject to substantial noise interference. Connections to satellites

at medium and high earth orbit suffer excessive delays due to the geographical distance.

2.3 Evolution of DSL telephony

It is arguable when the subscriber loop was first used for data transmission - was it the telegraph,

or the first voice-band modems? The term digital subscriber line was first conceived to describe

the digital connection between subscribers and the integrated services digital network (ISDN).

Since then various DSL systems have evolved in reflection to different user requirements and

technological advances. An outline of the DSL versions follows below.
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Basic-rate access DSL

The acronym DSL was originally used to refer to this technology, also known as basic-rate

access transmission for ISDN (ISDN-BA or BRI). The development of ISDN started in the

1970s, with first ISDN trials in 1985. DSL provides full-duplex access to ISDN at 160 kbps

over a single telephony pair. The DSL payload is usually two ’B’ or Bearer channels of 64 kbps

each, one ’D’ or signalling channel at 16 kbps, which can sometimes be used for packet data,

as well as a 16 kbps channel for framing and line control. The ITU Recommendation G.961

[15] defines three different systems:

� Appendix I: 2B1Q coding with echo cancellation, used in North America and much of

Europe. It is also standardised as ANSI T1.601 [16] and ETSI TS 102 080 [17].

� Appendix II: 4B3T coding with echo cancellation, used in some European countries (pri-

marily Germany). As well as in G.961 it is also standardised in Annex B of ETSI TS 102

080 [17].

� Appendix III: alternate mark inversion (AMI) coding with synchronised time-division

duplexing (TDD), used in Japan.

ISDN was once hailed as the ultimate replacement of the plain old telephone service (POTS). It

enjoyed, however, only limited success. The more notable exception is Germany, where ISDN

deployment was accelerated by government mandate. ISDN was focused on telephony services

and lower-speed packet-switched data. However, the driving market force behind the roll out

of digital subscriber loops turns out to be the Internet. ISDN networks were poorly suited for

high-speed packet-switched data and long holding times, which are characteristic of Internet

access. Therefore, in countries where deployment was driven by market demand the ISDN

service failed to pick up.

T1/E1

Although originally T1/E1 were designed and installed for trunk transmission of 24 or 32 mul-

tiplexed 64 kbps pulse code modulation (PCM) voice channels between central offices, nowa-

days they have been replaced almost completely for that use by fibre and microwave. Since

the 1970s, however, they have also been used for high-speed links between central offices and

customer sites and should arguably also be considered DSLs. Although T1/E1 have been made
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obsolete by newer DSL technologies, already installed systems used as DSL are unlikely to be

replaced in the short term. T1 is a 1.544 Mbps dual simplex system on two pairs using AMI or

B8ZS (bipolar, with 8-zero substitution) coding and repeaters every 6,000 ft ( � 1.83 km), used

in North America. E1 is similar to T1, but at 2.048 Mbps with HDB3 (high density bipolar

order 3) or AMI coding and repeaters spaced approximately every 2 km, used everywhere else

in the world. T1 is standardised as ANSI T1.403 [18] and E1 - as ITU Recommendation G.703

[19].

High-speed DSL (HDSL)

HDSL is generally used as a substitution for T1/E1 with the advantage that it has a longer

maximum reach without the use of repeaters than T1/E1 (12,000 ft / 3.66 km as opposed to

6,000 ft / 1.83 km). The work on HDSL started in the mid 1980s, with first service launched

in 1992. The earlier HDSLs are 1.536 Mbps two-pair or 2.048 Mbps two- and three-pair, full-

duplex systems using 2B1Q coding and echo cancellation. HDSL using carrierless amplitude

phase (CAP) modulation has also been standardised. Later versions of HDSL with 2B1Q,

CAP or trellis coded pulse amplitude modulation (TC-PAM) line coding use only one pair

and are sometimes referred to as SDSL (single-pair or symmetric DSL) or HDSL2 (second

generation HDSL). HDSL is standardised in ANSI T1.TR.28 [20] and ANSI T1.418 [21], ITU

Recommendation G.991.1 [22], and ETSI TS 101 135 [23].

Asymmetric DSL (ADSL)

ADSL is a home user-oriented technology that allows downstream (towards customer) bit rates

of up to about 9 Mbps, and upstream (towards network) of up to 1 Mbps. At the same time

ADSL leaves the possibility for using analogue voice (POTS) and ISDN services at baseband

frequencies. The ADSL development began in the early 1990s and the first field trials took

place in 1995. ADSL is based on discrete multi-tone (DMT) modulation and was initially

standardised as ANSI T1.413 [11]. ITU G.992.1 [1] uses ANSI T1.413 as a core system but is

expanded through annexes to meet regional needs. ETSI TS 101 388 [24] is based on G.992.1

but defines European specific requirements. ITU G.992.2 [25] and ANSI T1.419 [26] (also

known as ADSL “lite”) define a simpler system than the standard ADSL that is line compatible

with G.992.1 and T1.413.
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ADSL systems based on single carrier modulation such as carrierless amplitude and phase

(CAP) and quadrature amplitude modulation (QAM) also exist. The most prominent single

carrier ADSL is the rate adaptive DSL (RADSL) based on CAP. RADSL was submitted for

standardisation at ANSI as document no. T1E1/97-104R2a when competing with T1.413 for

approval. At the moment a CAP-RADSL standard does exist under the number ANSI T1.TR.59

[27] but is much less common than its DMT counterpart. Note that the DMT-ADSL also

provides the capability for rate-adaptive operation.

ADSL has achieved a much wider deployment than ISDN-BA and the number of ADSL con-

nections is still growing at a fast rate due to several factors. ADSL offers a much higher down-

stream bit rate in comparison with ISDN. ADSL is also much more flexible in carrying different

protocols on top without being tied up to a specific network architecture. The success of ADSL

has also been enhanced by the ever increasing need for faster Internet connections.

Single-pair high-speed DSL (SHDSL)

SHDSL belongs to the family of symmetric DSL and covers applications traditionally served

by HDSL and T1/E1 systems. It is believed SHDSL will repeat the success of ADSL and

prove popular with customers that require symmetric services. SHDSL is a product of the

standardisation efforts of ITU which began in the late 1990s and the final version of the standard

was released in 2001. SHDSL achieves higher bit rate or reach in comparison with older HDSL

systems. It also offers better spectral compatibility with other DSL systems. It can transport

from 192 kbps to 2.3 Mbps over a single-pair or 384 kbps to 4.6 Mbps over two pairs and is the

first standardised multi-rate symmetric DSL. SHDSL uses TC-PAM line coding and adheres to

ITU G.991.2 [2], ETSI TS 101-524 [28] and ANSI T1.422 [29].

Very high-speed DSL (VDSL)

VDSL is an extension of DSL to higher rates and will be able to carry up to 58 Mbps aggregate

(up plus downstream) data rate both in symmetric and asymmetric modes. At such high bit

rates the loop length is severely restricted. Therefore VDSL will be used primarily in hybrid

fibre/copper systems to connect optical network units (ONU) to the customer premises. VDSL

ranges vary between 300 m and 2 km depending on the scenario, e.g. fibre to the neighbourhood

(FTTN), FTTC(urb), or FTTB(uilding).
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Figure 2.1: Protocol stacks over xDSL.

VDSL is expected to capitalise on the growing deployment of optical fibre networks around

the world. It combines the ease of working with copper with the high bit rate offered by fibre.

VDSL is in the process of standardisation and a discussion is going on about the physical layer

specifications. The relevant standards in development are ANSI T1.424 - Trial Use [10], ITU

Recommendation G.993.1 [30], and ETSI TS 101 270 - 1 [31].

A summary of the features of the most common xDSL systems is presented in table 2.1. Later

sections of this chapter will make a more detailed overview of the most prolific and/or promis-

ing DSL versions, namely ADSL, SHDSL and VDSL.

2.4 Protocol stacks over xDSL

Most xDSL systems can be regarded as “bit pipes” that work in a synchronous transfer mode

(STM) and are not confined to a specific protocol. A more notable exception is ISDN, which

has standardised signalling and transfer modes geared towards the ISDN network. ADSL is

another exception and has a standardised asynchronous transfer mode (ATM). ATM is only

an option alongside STM in the “full” ADSL version [1, 11], but is compulsory in the “light”

ADSL version [25] (see section 2.5.5, p. 24).

The services that an xDSL system may transport include high-speed access to Internet, ATM or

frame relay networks, virtual private networks, remote access to corporate local area networks

(LANs), digital voice telephony, video streaming, retrieval or video on demand. In the general

case there is a variety of possible protocol stack scenarios that can carry these services over a

DSL link (Figure 2.1). Two main transport modes can be differentiated: bit stream and packet

data.
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xDSL Standard(s) Modulation No. of Line bit rate Freq. band
pairs

T1 ANSI T1.403 AMI or two 1.544 Mbps up to 1.544 MHz
B8ZS symmetric

E1 ITU G.703 HDB3 or two 2.048 Mbps up to 2.048 MHz
AMI symmetric

ISDN ITU G.961 2B1Q or one 160 kbps up to 80 kHz
ANSI T1.601 4B3T symmetric
ETSI TS 102 080

HDSL ITU G.991.1 2B1Q two 1.544 Mbps up to 370 kHz
ETSI TS 101 135 symmetric
ANSI T1.TR.28

HDSL2 ANSI T1.418 16 TC-PAM one 1.544 Mbps up to 300 kHz
symmetric upstream

up to 440 kHz
downstream

ADSL ANSI T1.413 DMT one max 1 Mbps up to 138 kHz
ITU G.992.1 upstream
ETSI TS 101 388 max 9 Mbps up to 1.104 MHz

downstream
ADSL ITU G.992.2 DMT one max 1 Mbps up to 138 kHz
lite ANSI T1.419 upstream

max 1.5 Mbps up to 552 kHz
downstream

RADSL ANSI T1.TR.59 CAP one max 1 Mbps up to 138 kHz
upstream
max 8 Mbps up to 1.104 MHz
downstream

SHDSL ITU G.991.2 16 TC-PAM one max 2.312 Mbps up to 400 kHz
ANSI T1.422 symmetric

SDSL ETSI TS 101 524
VDSL ANSI T1.424 DMT or one max 13 Mbps up to 12 MHz

trial-use QAM upstream
ITU G.993.1 max 23 Mbps
ETSI TS 101 270 downstream

max 28 Mbps
symmetric

Table 2.1: Common broadband copper loop transmission systems.

12



Background to xDSL systems

2.4.1 Bit stream

In this approach the transmitted data is carried directly by the xDSL bit stream in synchronous

mode. Telephony is transmitted either in a direct 64 kbps PCM stream or at reduced rate

with some type of compression, digital video is carried as an MPEG bit stream, and network

protocols are transmitted directly over the link.

2.4.2 Packet data

Another possibility is to use a packet layer as an intermediate protocol to transfer data. Two

packet protocols are fighting for dominance in xDSL - ATM and IP, although frame relay and

other packet protocols are found in some DSL implementations.

IP is gaining popularity because it is the underlying protocol for one of the most common DSL

applications - Internet access. The increase in voice over IP (VoIP) usage also contributes to

its case. IP can carry other protocols on top, such as TCP, UDP and even encapsulated ATM

(although many would question the rationale behind the latter solution).

ATM, on the other hand, is favoured by the telcos because it enables them to extend their ATM

backbones directly to the customers. In this way the telcos can take advantage of economies

of scale and no protocol conversion at the network interfaces is needed. Voice telephony over

ATM is carried using ATM adaptation layer 5 (AAL5), AAL2, or a structured circuit emulation

service. Digital video is transmitted as MPEG over AAL5, and video conferencing - over AAL5

or AAL1. It is also common to encapsulate IP over ATM, from where further protocols can be

built on top of IP.

There is no standard protocol stack scenario over xDSL. This work considers some bit stream

applications as representative of the STM mode, and ATM as representative of packet data.

However, the results could be extended to other protocol scenarios.

2.5 Overview of ADSL systems

Asymmetric digital subscriber line (ADSL) is a telephone loop technology which provides

downstream (towards customer) bit rates of up to approximately 9 Mbps and upstream (to-

wards network) bit rates of up to 1 Mbps over one twisted pair. The term asymmetric reflects
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Figure 2.2: Reference model of an ADSL system.

the fact that the available bit rate towards the customer is much greater than that from the cus-

tomer. ADSL also allows for POTS or ISDN to be transmitted at baseband frequencies. The

POTS/ISDN signal is combined with the ADSL data transmission via a filter commonly called

a “splitter” (Figure 2.2). The splitter consists of a low-pass filter on the POTS/ISDN side and

a high-pass filter on the ADSL side, although there are simplified designs that contain only the

low-pass filter and count on the input filters of the ADSL modem to do the high-pass filtering.

This section will concentrate on ADSL features relevant to noise impact modelling and analysis.

Full ADSL specifications can be found in ANSI T1.413 [11], ITU G.992.1 [1], ETSI TS 101

388 (Europe specific requirements only) [24], and ITU G.992.2[25].

2.5.1 ADSL architecture and transport capabilities

ADSL supports up to four downstream simplex bearer channels named AS0 to AS3, and up

to three duplex bearer channels named LS0 to LS2 (Figure 2.3). The signalling downstream

channels are operations, administration and maintenance (OAM), embedded operations channel

and ADSL overhead control (EOC/AOC), indicator bits (ib) and the optional network timing

reference (NTR). In the upstream direction ADSL only provides the duplex bearers LS0 to LS2

through input interface T-R, as well as the EOC/AOC channel. ATM transport is supported at

least over bearer channel AS0 downstream and LS0 upstream.

There are two paths between the multiplexer Mux/Sync control and Tone ordering. Both paths

are protected from transmission errors by cyclic redundancy checks (CRC), forward error cor-
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Figure 2.3: Block diagram of a generic ADSL modem [1] - downstream transmitter.

rection (FEC), and are scrambled to randomise the data stream. In one of the paths the data is

also interleaved. The interleaved path provides a lower error rate but higher latency in compar-

ison with the non-interleaved “fast” path. A bearer channel can be allocated by the multiplexer

either to the fast or the interleaved path. The data from both paths is then encoded into a discrete

multi-tone (DMT) symbol with a maximum of 256 tones downstream and 32 tones upstream.

The modulation may also be trellis coded (TC) and many implementations use TC although it

is optional in the standards.

ADSL supports a net data rate of at least 6.144 Mbps downstream and 640 kbps upstream.

Higher bit rates are possible but optional in the standards. The maximum bit rates mentioned

in the literature are 8 or 9 Mbps downstream and 1 Mbps upstream [6, 32–34].

2.5.2 ADSL framing

The ADSL superframe and frame structures are shown in Figure 2.4. An ADSL superframe is

composed of 68 data frames, which are encoded and modulated into DMT symbols (one data

frame is mapped onto one DMT symbol). At the end of each superframe the modulator inserts

a synchronisation symbol, which carries no user or signalling data and whose function is to

establish superframe boundaries. From the bit-level perspective, the DMT symbol rate is 4000

baud (symbol duration 250 � s), but because of the insertion of the synchronisation symbol the
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Figure 2.4: ADSL frame structure [1] - downstream, full overhead.

actual transmitted DMT symbol rate is 69/68 x 4000 baud.

Each frame within the superframe carries data from both the fast and interleaved buffer. The

fast data buffer contains the user data from those channels AS0-3 and LS0-2, which have been

assigned by the multiplexor to the fast path. The overhead consists of a fast synchronisation

byte, used to carry CRC, ib, EOC and synchronisation control bits, as well as AEX and LEX

bytes if the buffer contains data from the AS or the LS channels respectively. FEC redundancy

bytes are appended to the end of the fast buffer frame. Even when no user data is transmitted

along the fast path, it contains at least the fast synchronisation byte.

The interleaved buffer frame is also composed of a synchronisation byte carrying CRC, AOC,
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and synchronisation control bits, user data assigned to the interleaved path, and AEX/LEX

bytes. However, one FEC codeword of the interleaved path may comprise several mux frames

of reference point A. The FEC output is divided into FEC output data frames (reference point B)

and the FEC output data frames are interleaved at a specified depth to produce the interleaved

frames in reference point C. As with the fast buffer, the interleaved buffer should contain at

least the synchronisation byte even when no user data is transmitted over it.

The ADSL frame structure as described above contains the full possible overhead. The framing

overhead can be reduced by eliminating the AEX/LEX bytes (reduced overhead framing with

separate fast and sync bytes). If one of the paths is not used (single latency mode) it is also

possible to eliminate its synchronisation byte and operate in reduced overhead framing with

merged fast and sync bytes.

2.5.3 Coding and interleaving techniques in ADSL

Due to the considerable noise impairments of telephone lines (see chapter 3, p. 32), ADSL uses

numerous error detection/mitigation techniques. Only an outline of these techniques will be

given here. For full details of their ADSL implementation see [1, 11, 25].

Cyclic redundancy check (CRC). This error detection technique is implemented separately for

the fast and the interleaved buffer. Eight bits per buffer are generated for each superframe of 68

data frames. The CRC bits are then transmitted in the first frame of the following superframe.

The bits covered by CRC include all the data in the mux frames (reference point A) except the

previous CRC bits.

Scramblers. Scrambling is related indirectly to error correction because it randomises the data

stream, which benefits various digital signal processing algorithms at the receivers (e.g. equalis-

ers, echo cancellers etc.). ADSL uses a self-synchronising scrambler (see e.g. [35]) and as a

consequence the bit error rate is actually multiplied after descrambling (tripled in the ADSL

case). Scrambling is applied separately to the fast and the interleaved buffers in ADSL, and

both scrambling and descrambling are performed on the serial data streams without reference

to any framing or symbol synchronisation.

Forward error correction (FEC). Reed-Solomon coding (see e.g. [36]) has been chosen as the

error correction technique in ADSL. Reed-Solomon (RS) code arithmetic executes in Galois

Field GF(
���

) and allows for up to 16 bytes to be corrected in a codeword of up to 255 bytes.
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If the � message bytes
� � I � � � � � � ����� , and the

�
check bytes � � I � � � � � � � ��� are

represented through their polynomials
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respectively, then the check bytes can

be computed from: , ��- � � � ��- �"- ������� � ��- ��I
(2.1)

where
� ��- � ���

� 	 H
��� � ��-

�
� � � is the generator polynomial of the RS code, and � is a primitive

element that satisfies the primitive binary polynomial
@ � � @ ��� @�� � @ � � � . A data byte

� .�� I .�� I � � � I . H I . � �
is identified with the Galois Field element

.�� � ��� . � � ��� 
�
�
 � . H � � . �
.

The ADSL standard requires support of all even numbers from 0 to 16 of redundancy bytes

per codeword for both the fast and the interleaved buffer. For RS decoding and correction

algorithms see e.g. [37].

Interleaving. The Reed-Solomon codewords in the interleaved buffer are convolutionally in-

terleaved in a bid to overcome burst errors. By spreading the error bursts over several Reed-

Solomon (RS) codewords it is hoped that the number of errors will become small enough to

allow for error correction by the RS code. In the ADSL version each byte � � of a frame at the

input of the interleaver is delayed by
��- �!� �#" � bytes, where D is the interleave depth. ADSL

supports interleave depth which is a power of two from 1 to 64.

Number of frames per RS codeword. Combining several mux frames in a single RS codeword

can also be considered a burst error mitigation technique as it effectively “spreads” the code-

word over several ADSL frames. The number of frames per codeword S in ADSL can be any

power of 2 between 1 and 16. S=1/2 is optional to allow for bit rates higher than 8 Mbps to be

transmitted in the interleaved path downstream.

The last three techniques are aimed at neutralising the impact of impulse noise in ADSL. The

influence of their parameters is a subject of detailed study in this work. A summary of the

minimum FEC capabilities required by the ADSL standards [1, 11, 25] is presented in table 2.2.

It should be noted that as a result of the error mitigation techniques, the interleaved data buffer

at the receiver will be delayed with respect to the fast data buffer by (number of mux frames

per FEC codeword x interleave depth x 250) � s.

Trellis coding is another ADSL coding technique and will be discussed in the next section.
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Parameter Fast buffer Interleaved buffer
Redundancy bytes per RS codeword - R 0,2,4,6,8,10,12,14,16 0,2,4,6,8,10,12,14,16

Mux frames per RS codeword - S 1 1, 2, 4, 8, 16
Interleave depth - D 1 1, 2, 4, 8, 16, 32, 64

Note that R � 0 only if user data is transmitted over the respective buffer. Also, R must be an integer multiple of S.

Table 2.2: Minimum FEC coding capabilities for ADSL.
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Figure 2.5: Simplified diagram of a DMT transmitter.

2.5.4 DMT modulation

The ANSI T1.E1.4 Working Group, which developed the original ADSL T1.413 standard [11],

took the decision to base the ADSL line code on multicarrier modulation where each subcarrier

uses quadrature amplitude modulation (QAM). This multicarrier version is commonly known

as discrete multi-tone (DMT)1.

DMT was first suggested by Weinstein and Ebert [39] and its implementation is based on dis-

crete Fourier transform (DFT) techniques. The DMT modulation consists in dividing the data

into blocks and encoding it into a set of N multibit complex symbols
� � . Inverse DFT (IDFT)

is then applied on the set of complex symbols (equation 2.2). In the end 2N real samples are

generated and passed through a digital-to-analogue converter (DAC) as shown in figure 2.5.

� 6 �
� 	 H
�
� � �

� ���	��

������ (2.2)

Modulation via an IDFT is equivalent to multicarrier quadrature amplitude shift keying (QASK),

in which the modulating baseband pulse shape is a rectangle and as a result the spectra of the

1The usage of DMT for ADSL was first proposed in 1991 [38] and two years later, not without heated debates,
was chosen to be the basis of the ADSL standard.
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Figure 2.6: Trellis coding in ADSL.

individual subcarriers are sinc functions. The advantage of this approach is that both the trans-

mitter and receiver can be implemented using efficient fast Fourier transform (FFT) techniques.

No passband filtering is required at the output of the constellation encoders as opposed to other

multicarrier modulation techniques [39, 40].

Trellis coding

The ADSL standard gives as an option the possibility to trellis code the modulation. The

standardised convolutional encoder is based on Wei’s 16-state 4-dimensional trellis code [41].

The encoding is carried out from one subcarrier to the next, as proposed by Decker et al. [42],

and the state of the encoder is forced back to zero at the end of each DMT symbol [1, 11, 25].

The subcarriers are grouped in pairs and the three least significant bits (u1,u2,u3) from two

successive subcarriers are coded, which reflects a constellation expansion of 1 bit per four

dimensions (figure 2.6). That is, the trellis code in the ADSL standard protects only the two

most vulnerable (with least Hamming distance) bits in each constellation. The output coded

bits (v1,v0) and (w1,w0) are dimensions in the vectors of the two successive constellations.

20



Background to xDSL systems

Bit loading

One of the advantages of multicarrier modulation is that the number of bits and the energy

transmitted over each subchannel can be set adaptively. In this way noisy regions of the spec-

trum can be “loaded” with fewer bits or avoided altogether. The emitted power spectral density

(PSD) can also be easily controlled, which is useful for spectral management in the local loop.

The algorithms for assigning data and energy to each of the subcarriers, commonly known as

loading algorithms in the multicarrier technology, are based on analysis of the channel capacity.

It can be shown that for subchannel
�

the number of bits � ��� � can be approximated by [6, 32]:

� ��� � � $�� � � � � � � � � ��� �
� � � $�� � ��� � � 4 6 � � 6

�
�
�6�� (2.3)

where
� � � ��� �

is the signal-to-noise ratio,
4 6

is the transmit energy, � 6 is the channel gain,

�
�6

is the noise power, and
�

is the gap defined for QAM modulation with the approximate

expression [32]:
� �

� �

 ,��	� � 	 H

��� 
 ) � ��
 � (2.4)

where SM is a service guarantee margin (typically 6dB for ADSL [32]), CG is the coding gain

of error correction codes used in the system (in ADSL considered 2 dB for the Reed-Solomon

plus 2 dB if there is trellis coding [32]),
� 
 is the symbol error probability, and the function� ��@ �

is defined as:
� ��@ � � �� � ��
��9 � 	�� 
 ; � . � � (2.5)

The total number of bits over N channels � ���"� ��! ��� � 	 H6 � � � ��� � is maximised for a fixed total

energy
4 ���"� ��! � � � 	 H6 � � 476

by the so-called water-filling solution:

476 � � �
�
�6

� 6 ��� �B� � R (2.6)

In general the number of bits assigned to each subcarrier may be chosen according to two

possible requirements:

� Maximum data rate at a given
�

, i.e. at a pre-defined error rate, margin and coding gain.

An extra requirement may be imposed such that the data rate is an integer multiple of N"
the symbol rate.

� Minimum error rate at a given data rate, margin and coding gain, i.e. maximum
�

at a
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Figure 2.7: Power spectral mask for the downstream transmit signal of ADSL over POTS (as
defined in [1]).

defined data rate.

Due to crosstalk considerations (see Section 3.3, p. 59) the transmit power of the system may

be limited. The restrictions may be imposed on the transmit power spectral density (PSD) or

on the total transmit power depending on the specific requirements. ADSL in particular is PSD

limited and figure 2.7 shows the transmit downstream PSD mask for ADSL operating over

analogue telephony (POTS).

The practical implementation of the water-filling solution is somewhat problematic as it as-

sumes infinite granularity in the constellation size. The first finite-granularity multicarrier load-

ing algorithm was developed for voiceband modems by Hughes-Hartogs [43]. However, this

algorithm is very slow for applications like ADSL, where a large number of bits have to be

loaded onto a large number of channels [44]. Numerous works suggest practical loading algo-

rithms which are suitable for ADSL. Some algorithms deliver potentially suboptimal solutions

but at a significantly increased convergence rate [44–47]. Other loading algorithms ensure op-

timum solution at reduced complexity in comparison with Hughes-Hartogs [47–51]. The work

presented in [52, 53] derives necessary and sufficient conditions for optimality of bit assignment

and applies these conditions to construct fast loading algorithms.

The services transmitted over ADSL may have different quality of service (QoS) requirements,

where QoS usually (but not always) refers to latency and bit/byte error rate. By means of an

appropriate bit loading a DMT system can provide multiple error rates simultaneously. The
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Figure 2.8: Frequency spectrum usage by ADSL with (a) frequency division duplexing and (b)
echo cancellation.

task of assigning data with different error rate requirements to the DMT subchannels has been

considered in [54–57]. The multiple QoS idea has also been used in [58] for image and video

transmission, whereby the data bits are allocated according to their perceptual importance to

subchannels with different error rates. A superframe-based bit allocation algorithm has been

proposed in [59].

ADSL frequency band

The subcarriers in the ADSL modulation are spaced at
	 8

= 4.3125 kHz. In the downstream

direction the maximum number of carriers is
� ��
 � ��
�


, which are placed at frequencies� 	 8
,
�

= 1 to 255. One of the carriers should be left unmodulated as a pilot tone. In the

upstream direction the maximum number of carriers is
�
� 
 = 31, placed at frequencies

� 	 8
,�

= 1 to 31. The downstream frequency spectrum may go up to 1.1 MHz, and the upstream

spectrum - up to 138 kHz. The lower limit of the frequency band for the upstream depends on

the service option selected, e.g. whether the system is ADSL with POTS, ADSL with ISDN,

or only ADSL. The lower limit of the downstream frequency band depends on both the service

and duplexing option selected. Several duplexing methods may be used in ADSL:

� Frequency division duplexing (FDD). In this strategy the downstream is placed in a fre-

quency band separate from the upstream (figure 2.8(a)). In this way self-crosstalk is

prevented but the available bandwidth is not used very efficiently.
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� Echo cancellation. Another approach is to place the upstream within the downstream

band and use echo cancellation to remove the reflection of the locally transmitted signal

(figure 2.8(b)). However, the level of induced kindred near-end crosstalk (NEXT) (see

section 3.3, p.59) is so high in ADSL that the echo cancellation duplexing may be unde-

sirable even at low frequencies [32]. Besides, echo cancellation increases the complexity

of digital signal processing in the receivers.

� Mixed FDD/echo cancellation. In this strategy duplex transmission is used up to a certain

frequency, and simplex with FDD above that.

2.5.5 ADSL “lite”

ITU Recommendation G.992.2 [25], previously known as G.lite, specifies an ADSL system

which is less complex than but line compatible with G.992.1. The ANSI version of the standard

is published as ANSI T1.419 [26]. ADSL lite has the following main characteristics:

� It is designed for “always on” operation and therefore has provisions for:

– power saving modes of the ADSL transceiver unit (ATU) at both the central office

(ATU-C) and the customer premises (ATU-R);

– short wake-up times from standby mode when transmission is needed;

– a fast retraining mechanism is added to permit rapid recovery from noise pulses,

such as on/off hook events.

� The low-pass part of the POTS splitter should not be needed.

� The number of tones in the DMT symbol is reduced from 256 to 128, and the maximum

number of bits per tone is reduced from 15 to 8.

� Only transport of asynchronous transfer mode (ATM) is supported.

� Range is more important than bit rate - ADSL “lite” aims at delivering service to larger

distances albeit at potentially lower data rate.
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Figure 2.10: Block diagram of a generic SHDSL transmitter (after [2]).

2.6 Overview of SHDSL systems

Single-pair high-speed digital subscriber line (SHDSL) is a DSL technology designed for busi-

nesses that require fast symmetric data transfer. SHDSL supports data rates from 192 kbps to

2.312 Mbps and works in symmetric mode, i.e. the downstream data rate is equal to the up-

stream data rate. SHDSL can also operate over two pairs, in which case the available data rate

becomes 384 kbps to 4.624 Mbps. SHDSL is the first standardised multi-rate symmetric DSL.

The SHDSL standards ITU G.991.2 [2], ETSI TS 101-524 [28], and ANSI T1.422 [29] leave an

option for repeaters (SRU) in its reference model (figure 2.9). Unlike ADSL, SHDSL does not

provide the possibility for sharing the pair with POTS or ISDN service. If needed, telephony

and fax signals are transmitted in a digitised form in the data stream provided by SHDSL.

2.6.1 SHDSL architecture and transport capabilities

Figure 2.10 shows the block diagram of an SHDSL transmitter, where n represents bit time, m

represents symbol time, and t represents analogue time. The input user bit stream is framed,

scrambled to ensure higher level of randomisation, and encoded to 16-level trellis-coded pulse
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amplitude modulation (TC-PAM). Since SHDSL uses a single carrier modulation, the spec-

trum of the modulated signal is relatively large. Therefore a precoder is needed to compensate

the channel distortion that broadband signals generally suffer in transmission channels. The

spectral shaper is related to the spectrum compatibility of SHDSL and is subject to regional

requirements.

The allowed user data rates
�

in single-pair SHDSL are defined by
� � �!" � � � � "�� kbps,

where

�� � � 
��

and
��� � � �

, for
� � 
��

, � is restricted to values 0 or 1. That is,

the allowed data rates are 192 kbps to 2.312 Mbps in increments of 8 kbps. Alternatively for

two-pair SHDSL the allowed data rates are 384 kbps to 4.624 Mbps in increments of 16 kbps.

2.6.2 SHDSL framing

An SHDSL frame starts with synchronisation bits, followed by four groups of overhead (OH)

and payload blocks, and ends with several vendor dependent “stuff” bits (Stb), as shown in

Figure 2.11. Each payload block has
� � � � � � � �!"�� �

bits and is divided into 12 sub-blocks

of
� 
 � � �

� ��"�� �
bits each. The overhead contains a cyclic redundancy check (CRC),

embedded operations channel (EOC) information, and the so-called “stuff” bits. The total

framing overhead in synchronous mode is 48 bits per frame or 8 kbps regardless of the user

data rate. The total frame duration in synchronous mode is 6 ms.

For the optional two-pair mode, the above details represent the framing of each pair. Both pairs

operate at the same payload rate and the transmitters maintain frame alignment within some

specified limits. A payload block will then contain
� �

bits and each sub-block -
� � 
 bits.
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The framing organisation of SHDSL - without long FEC codewords or interleaving, allows

SHDSL to achieve much lower latency than ADSL. However, this comes at the price of poorer

error protection in SHDSL especially against burst errors.

2.6.3 Coding and TC-PAM modulation in SHDSL

SHDSL uses cyclic redundancy checks (CRC) as an error detection mechanism. The CRC

sums are calculated during framing and transmitted in the overhead bits of the following frame.

The bits covered are all payload data plus some of the overhead except the synchronisation

bits, CRC bits and the Stb. The scrambler used in SHDSL is self-synchronising and therefore

multiplies bit errors.

SHDSL relies for error correction on trellis coding implemented in the encoder (Figure 2.12).

One bit in a symbol is convolutionally encoded in which process the symbol is expanded by

one bit. The resulting word is mapped to some pre-determined levels. The structure of the

convolutional encoder is specified but the coefficients it uses are vendor specific. According to

annexes A and B in [2] SHDSL uses 16-level TC-PAM2, a symbol carries 3 bits expanded after

the trellis coding to four bits and is mapped to 16 levels. The symbol rate is given as
��� �

� � ) 

where

� � �!" � � � � " � is the payload data rate.

The frequency band that PAM takes up depends on the symbol rate and therefore on the data

rate. The nominal PSDs for several data rates are shown in Figure 2.13. Because of spectral

compatibility issues the SHDSL standard also defines power spectral density masks [2, 28, 29].

2SHDSL has inherited the TC-PAM from earlier versions of HDSL2. CAP and DMT were also considered when
discussing the SHDSL standard, but in the end PAM was chosen as a compromise
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Figure 2.13: Nominal PSDs of SHDSL for 256, 512, 768, 1536, 2048, and 2304 kbps respec-
tively for the graphs from left to right (as defined in [2]).

2.7 Development of VDSL systems

Very high-speed digital subscriber line (VDSL) is a subscriber loop technology which is still

in the process of development, although single carrier VDSL systems have been deployed in

Korea. VDSL is intended to be incorporated in hybrid fibre-copper systems that combine the

large bandwidth of optic fibre technology and the ease of deployment and use of copper.

In the VDSL reference model (Figure 2.14) an optic fibre to the neighbourhood (FTTN), the

curb (FTTC), the cabinet (FTTCab), or the building (FTTB) will feed an optical network unit

(ONU). VDSL will provide high-speed connection of up to 58 Mbps aggregate (upstream +

downstream) from the ONU to the end users over twisted-pair subscriber loops. VDSL is also

expected to support analogue telephony (POTS) or ISDN on the same pair in a fashion similar

to ADSL. The frequency band of VDSL would be placed above that of POTS or ISDN and a

filter (splitter) will separate the VDSL from POTS/ISDN signals.

VDSL is expected to be able to operate in both asymmetric and symmetric mode. The data rate

requirements vary across the different documents. E.g. the rates specified in [31] allow up to

23 Mbps downstream and up to 4 Mbps upstream in asymmetric mode. Again according to
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Figure 2.14: VDSL reference model.

[31], in symmetric mode VDSL should provide data rates of up to 28 Mbps in each direction.

Other specifications give 52 Mbps downstream and 6.4 Mbps upstream for asymmetric, and

34 Mbps two-way for symmetric [32]. Due to the interference and attenuation at such high bit

rates, VDSL will only have a reach between 300m and 2 km and will be able to operate at the

top speeds only on the shortest loops.

Another requirement is that VDSL should be able to support both synchronous transfer mode

(STM) and asynchronous transfer mode (ATM) [31].

2.7.1 Proposed line codes

The line codes have been the subject of much debate in the process of VDSL standardisation.

Here are the main choices that can be made:

Single carrier vs. multicarrier modulation. The principal choice in the VDSL development is

whether to use single carrier or multicarrier modulation. Arguments have been given in favour

of each type of modulation [6, 32, 60]. Both modulations have advantages and weaknesses [61]

and a careful consideration has to be made as to which modulation would suit better the VDSL

environment.

Which single carrier modulation? Should single carrier modulation be chosen, there are two

possible options. One possibility is to use carrierless amplitude phase modulation/quadrature

amplitude modulation (CAP/QAM), the other is to use a simple line code such as a version of

four-level signalling.
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Figure 2.15: The zipper principle of duplexing.

Which multicarrier modulation? If multicarrier modulation is preferred, then the “classical”

discrete multitone (DMT) modulation generated by Fourier transform is one possibility. An-

other option is the so-called discrete wavelet multitone (DWMT), where the modulated signal is

obtained by wavelet transform. Some works argue that in DWMT the spectral overlap between

subcarriers is lower than that in DMT [62–64]. Therefore, the DWMT subcarriers can be more

tightly packed with a lower guard band between them, thus allowing for more efficient use of

the channel bandwidth than can be achieved with DMT. A third multi-carrier version is ob-

tained by filter banks and is known as filtered multitone (FMT). The results reported in [65–67]

suggest that FMT offers advantages over other modulations in terms of spectrum management

and duplexing.

Which duplexing method? In most discussions it is agreed that echo cancellation is not a vi-

able option for VDSL because the benefits it offers are insignificant - about 10% over the other

multiplexing technologies but only at frequencies up to 3 MHz and on short loops [32]. Two

other options remain - time division duplexing (aka ping-pong), where the upstream and down-

stream are transmitted alternately, or frequency division duplexing, where the upstream and

downstream are placed in separate frequency bands. An added twist to the frequency division

in DMT is to extend it to zipper duplexing as opposed to normal bandwidth separation (Fig-

ure 2.15). It has been argued that the zipper method provides benefits in terms of crosstalk

interference and noise robustness [68–71].

2.7.2 Standards status

Several organisations take interest in the development of a VDSL standard. Those are ANSI,

ITU, ETSI, the digital audio-visual council (DAVIC), the ATM Forum, and the ADSL forum.
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DAVIC and the ATM Forum address the higher level protocols, the ADSL Forum deals with

the network, protocol and architecture aspects of VDSL, and the VDSL metallic interface and

transceiver protocols are developed by ANSI, ITU, and ETSI. The VDSL standards are still

largely in the process of development. ANSI has released a TrialUse version of the VDSL stan-

dard under the number T1.424 [10]. ETSI TS 101 270 [31] defines the functional requirements

to VDSL systems. ITU has also published a document on VDSL foundation under number

G.993.1 [30].

2.8 Summary

In this chapter a brief overview of the historical development of the digital subscriber line

technology has been presented. This provides an explanation of the reasoning behind various

technological decisions and restrictions in the DSL standards. A short description of possible

protocol stack scenarios of services carried over DSL has also been outlined. Following this, a

detailed review of some common DSL systems has been made. The emphasis has been placed

on features in the standards affecting the error rate, such as framing, error mitigation techniques,

and modulation, since system error performance is the area of interest in this work.

Two of the considered systems - ADSL and SHDSL, have been shown to have completely dif-

ferent physical layer specifications. ADSL has a particularly complicated metallic interface

with numerous error mitigation techniques, a complex framing format and an elaborate mod-

ulation. It is therefore not a trivial task to evaluate the impact of errors in ADSL. SHDSL

has much simpler physical characteristics, however it lacks in extensive error protection par-

ticularly against burst errors. Therefore, there is still a need to analyse thoroughly the error

performance of DSL systems. The results of such an analysis can contribute both to finding

optimal parameter settings of existing systems, and to choosing appropriate specifications for

the next generation in the DSL family - VDSL.
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Chapter 3
xDSL line noise impairments

3.1 Introduction

In this chapter, the sources of noise on telephone lines and the respective noise models are in-

troduced, since they will form the basis of this work. Firstly, the statistical nature and modelling

of impulse noise on local loops is presented as impulse noise is one of the major impairments to

DSL systems. After introductory notes on the historical development of impulse noise models,

the discussion concentrates on the latest advancements in the statistical description of impulse

noise on the local loop. The salient statistics of impulse noise include inter-arrival times, im-

pulse durations, impulse amplitudes, and frequency spectrum. The problem of generation of

impulses with appropriate statistics is also discussed. Some new work on impulse power statis-

tics and more accurate impulse frequency spectrum modelling is presented here.

Following this, an overview of the sources of crosstalk and the crosstalk models is made.

Mixing crosstalk from various sources and the administrative measures undertaken to restrict

crosstalk are discussed.

Finally, the issue of radio frequency interference to and from DSL systems is presented.

3.2 Impulse noise

Impulse noise is a non-stationary stochastic electromagnetic interference which consists of ran-

dom occurrences of energy spikes with random amplitude and spectral content. The causes of

impulse noise on the telephone line are diverse and vary from telephone on/off-hook events,

through noise from home, office, and industrial electrical appliances, and transport vehicles,

to atmospheric noise from electrical discharges. The resulting interference into the telephone

twisted pairs is a major impairment for DSL systems. It is therefore essential to know the

statistical nature of impulse noise in order to be able to evaluate its impact on transmission

technologies.
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3.2.1 Historical perspective on impulse noise

In order to address the specifics of the impulse noise non-stationarity, virtually all studies up to

now divide its statistical properties in two groups. The description of impulse statistics, such as

voltage distributions, lengths, or spectra, is considered separately from the impulse inter-arrival

times.

Impulse statistics

The emergence of digital transmission over telephone lines prompted several studies of the

statistics of impulse noise and the errors caused by it in the 1960s and 1970s. Mertz proposed a

higher-order hyperbolic distribution to model the impulse noise amplitudes on telephone lines

[8]. In [72], Fennick used an exponential function to describe the amplitude densities in the

extreme tails. Stuck and Kleiner considered amplitude density models with symmetric stable

distributions, log-normal distribution, and Rayleigh distribution [73].

The first field trials of DSL systems showed that impulse noise is one of the major limiting fac-

tors in a DSL transceiver’s achievable performance. However, earlier impulse models, although

probably suitable for voice-band digital transmission over telephone lines, were not necessar-

ily applicable to DSL systems, which use larger bandwidth and work at higher bit rates than

their voice-band counterparts. This triggered a wave of DSL-oriented surveys of impulse noise

on the loop plant in the 1980s. The measurements mostly concentrated on the ISDN frequency

band and rarely exceeded several hundred kilohertz. More important works include [74–76] and

a summary of the early results is presented in [7]. In [75, 77], a hyperbolic distribution for the

impulse amplitudes was proposed, in a form which is a special case of the general hyperbolic

distribution discussed in [8].

New surveys in an increased frequency band accompanied the development of ADSL in the

early 1990s. Valenti and Kerpez of Bellcore reported results from measurements on telephone

lines in [78], but the number of sampled impulses was insufficient to derive statistical prop-

erties of the noise. Cook of British Telecom (BT) proposed an analytical model of impulse

noise after studying data from a wide-scale survey on the BT telephone network [79, 80]. This

model, which is now usually referred to as the Cook pulse, defines a continuous-time mathe-

matically abstract symbolic pulse. A drawback of the Cook pulse is that its shape is unrealistic,

and a single symbolic pulse cannot represent the statistical properties of a stochastic process.
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Another impulse noise model was proposed by Henkel and Kessler of Deutsche Telekom (DT)

based on measurements in the German telephone network [81–83]. It includes probability den-

sity functions of impulse amplitudes (generalised exponential) and lengths (log-normal mix-

ture), as well as mean power spectral density and phase. However, both the Cook and the

Henkel/Kessler models only deal with mean power spectral densities and do not reflect the fact

that each impulse has a unique power spectrum.

The latter issue has been tackled in a recent impulse noise model [3, 4], which is based on mea-

surements conducted independently by BT together with the University of Edinburgh [84–87]

and DT [81–83, 88, 89]. This model combines the Henkel/Kessler densities for impulse am-

plitude and length with a spectral model and impulse generation method proposed by Mann

and McLaughlin, and inter-arrival times model presented by Levey and McLaughlin. The

Mann/McLaughlin spectral model [3, 4] is based on the spectral features of the impulse au-

tocorrelation function, which then allows the use of a technique proposed by Tough and Ward

[90] for impulse generation with appropriate time domain and spectral characteristics. The

Levey/McLaughlin inter-arrival times model [5, 84, 86] will be discussed below.

Inter-arrival statistics

From the first studies of impulse noise in the early 1960s, it has been observed that the error

events in data transmitted on telephone lines tend to occur in groups (bursts). Mertz presented

a model with Poisson distributed spacing between error bursts and a random distribution of

errors within a burst [8]. Berger and Mandelbrot [9] proposed a model for inter-error intervals

that is based on the Pareto distribution and belongs to the class of renewal processes [91, 92].

Mandelbrot went on to conclude in [93] that even if the error events in communication circuits

were independent and identically distributed (iid), the errors themselves exhibited self-similar

clustering, i.e. errors were grouped in bursts, which in turn were grouped in bursts of bursts

and so on. This self-similarity [93] of error clusters is an indication of the invariance of the

generating mechanism with respect to multiplication of time by a constant.

In subsequent analysis Sussman [94] and Fennick [72] confirmed that the Berger/Mandelbrot

model showed a very good agreement with inter-arrival data from network measurements. Fano

also derived a complementary distribution of inter-arrival times with a Pareto-type component

multiplied by an exponential density [95], although he started from a completely different as-

sumption that impulse noise reverberates in the telephone network. Fano also noted that the
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measurement results presented in studies are inconsistent with the assumption that the inter-

arrival times are Poisson distributed. Stuck and Kleiner [73] also admit that a simple Poisson

process cannot approximate well the empirical inter-arrival distributions. Nevertheless, they

finally assumed exactly the Poisson model, the reason being that the alternatives considered by

them - a � -th order autoregressive process, and a doubly stochastic Poisson process, performed

even worse. Valenti and Kerpez [78] followed [8] and [73] and also assumed Poisson distribu-

tion for inter-arrival statistics. So did Cook [79, 80], who also included a separate probability

for impulse noise caused by ringing cadences. A generalised Poisson law was used for daytime

statistics of inter-arrival times by Henkel and Kessler as well [81–83].

Fennick pointed out in [72] that while the Berger/Mandelbrot model seems to be the best pre-

sented to date, a mathematically more tractable model based on partitioned Markov chain

was proposed by Fritchman [96]. The approaches of [9] and [96] were combined by Levey

and McLaughlin, who argued that an inter-arrival time model based on Markov renewal pro-

cess would account well for the clustering of inter-arrival times and the distribution heavy

tails they observed in [5, 84, 86]. This inter-arrival times description was adopted in the joint

DT/BT/University of Edinburgh (UE) impulse noise model [3, 4].

It should be noted that there is a subtle difference between different inter-arrival models. Some

models, such as that of Berger and Mandelbrot, concern inter-error intervals between errored

bits in a data stream, whereas impulse noise is related to the inter-arrival times between im-

pulses. Indeed, the errors in the inter-error models are caused by impulse events, however, not

all impulse events are necessarily error-inducing.

3.2.2 Impulse noise model

It is evident from the previous sections that the BT/UE/DT approach to impulse noise modelling

[3, 4] has clear advantages over other impulse noise studies because it:

� gives a full description of the impulse statistics in the time and frequency domain, and

the inter-arrival times between impulse events;

� enables generation of impulses with statistically appropriate both time domain and spec-

tral characteristics ;

� takes into account the clustering and heavy-tailed distribution of intervals between im-
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pulse events, and the fact that the distributions of impulse amplitudes and lengths are also

heavy-tailed;

� is based on recent measurements and reflects the current statistics of impulse noise in

telephone networks. It is well known that in the past a major source of impulse noise

in telephone lines were mechanical switches and dialing pulses, whereas nowadays most

networks use digital switches and tone dialing and the character of impulse noise is not

necessarily the same as several decades ago;

� is based on wide-band measurements (15 MHz for BT/UE, 5 MHz for DT) and can

be applied to analysis of systems transmitting signals with large (for a telephone line)

bandwidth, such as ADSL (1.1 MHz) and VDSL (12 MHz);

� agrees with empirical statistics from two different networks in different countries (UK

and Germany), demonstrating that the impact of loop topology on the noise statistics is

quantitative rather than qualitative. That is, although the scaling of the impulse statis-

tics does change, the type of distributions remains invariant regardless of the network

topology. Therefore it can be assumed that the model represents accurately the statistical

nature of impulse noise in general.

In the next four sections, the different aspects of this impulse noise model will be described in

some detail, since the model forms the basis of the analysis in this work. Complete description

of the model is to be found in [3, 4], as well as [81–83, 85, 88, 89] for impulse amplitudes and

lengths and [5, 84, 86] for inter-arrival times.

3.2.3 Impulse modelling in time domain

In the time domain, impulse noise is characterised with the impulse voltage amplitudes, impulse

durations, and inter-arrival times. This section will present the individual impulse statistics, i.e.

amplitudes and lengths, as well as a novel analysis of the impulse powers, and finally some

notes on impulse detection. The inter-arrival times will be discussed later in a separate section

because of their specifics.
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Impulse amplitudes

The impulse amplitude model is based on an approach originally proposed by Henkel and

Kessler in [81–83], which consists of approximating the voltage histograms with a generalised

exponential distribution of the form:

8 ��� � � � � �
� � � � � � 	�� �<; ��� � ����� I (3.1)

where � is the voltage and � � - a scaling parameter. This model reflects well the fact that voltage

distributions are heavy-tailed [85] and offers a good approximation for all measured impulse

noise voltage amplitude distributions collected in the networks of both DT [81–83, 89] and BT

[3]. Nevertheless, a Weibull density has also been investigated as a possible alternative in [3]

because it is mathematically more tractable when using the results of Tough and Ward [90] to

generate random noise with prescribed amplitude and spectral characteristics (see section 3.2.5,

p.50). In the statistics literature the Weibull density function is defined as (see e.g. [97]):

8 >O� � � � �
	
�� � � ��
 	 H

� 	 � ��� if
��� � I

�
elsewhere

I (3.2)

where ��� �
and ��� �

are shape parameters. For the purposes of this model (3.2) has been

modified in [3] to a double Weibull density to make it symmetrical:

8 >?� � � � � �
� � � 	 � 	 
 	 H

� 	 � � � � � � (3.3)

A comparison between the two approaches for data measured at the customer premises of a

BT line is shown in Figure 3.1. It can be seen that the generalised exponential and the Weibull

approximation densities virtually overlap. However, it has been reported in [3] that DT data

required scaling of the Weibull distribution in order to achieve good fit. Example values of

model parameters for both densities measured at customer premises (CP) on BT and DT lines,

as well as at a DT central office (CO) as given in [3] are presented in Table 3.1. A binding

reference for such model parameters can be found in [4].

Derivation of impulse power statistics

From the probability density function for impulse amplitudes it is possible to derive a distribu-

tion of the impulse power. The impulse power relates directly to the signal-to-noise ratio, which
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Figure 3.1: Generalised exponential and Weibull approximations of voltage density measured
at customer premises by BT.

Weibull Gen exp
� � ���

BT(CP) 0.263 4.77 9.12 � V
DT(CP) 0.486 44.40 23.23 nV
DT(CO) 0.216 12.47 30.67 nV

Note that � and � are computed such that � is in volts.

Table 3.1: Model parameters for the Weibull and generalised exponential voltage densities
from BT and DT measurements (after [3]).

can be used further for evaluating the impact of impulse noise on communications systems. This

novel extension of the impulse noise model was obtained by means of variate transformation.

If
T���@ �

and
8 ��@ �

are respectively the distribution function and density function of the random

variable
@

, and
@ � @ � � �
	 � � � ��@ �

is a one-to-one relation such that y is continuous and

differentiable in x and vice versa, it can be shown [98] that:

. T�� � � � 8�� @ � � ��
 . @. � . � �
(3.4)

Let us consider the normalised power
� � � � � , noting that an extension to the general case

when the resistance
���� � is trivial. Using the generalised exponential density from Equa-
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tion 3.1 in Equation 3.4 it is obtained:

8 ��� ��� � � � H
� � ��� L � L�� � 	�� L � ; L ��� ��� � � I � � � � I � � � � �� � (3.5)

Note that for the purpose of power modelling, this density has been modified to be non-

symmetrical. It should also be mentioned that unlike the impulse amplitudes, the power density

is no longer of generalised exponential type. If variate transformation is applied on the Weibull

form of the voltage distribution in Equation 3.2, the power density becomes:

8 >O� ��� � � � 

� � �

�


	 H

� � 	 � L ��� 
� I � � � ���
(3.6)

I.e., if we assume that the impulse amplitudes are Weibull distributed, the impulse powers are

also Weibull distributed but with a modified shape parameter � ) � . Figure 3.2 shows the power

densities derived from the voltage densities in Figure 3.1.
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Figure 3.2: Power densities derived from generalised exponential and Weibull approximations
of voltage density measured at customer premises by BT.
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Figure 3.3: Two-component log-normal approximation of impulse length densities from BT and
DT measurements.

Impulse lengths

The impulse lengths
�

are modelled as proposed in [82, 83] with a mixture distribution of two

log-normal components:

8 ! ��� � � & �� � � � H�� � 	�� H ; � 
 
 � ����� 
 ��� ; � � � � � � � & � �� � � � � � � 	�� H ; � 
 

 ����� 
 ��� ; � 
 � I (3.7)

where
&

, � H , �BH
, � � , and

� � are parameters. Obviously for
& � � , Equation 3.7 reduces to

a single log-normal density. The model agrees well with the findings in [85] that the length

distribution is heavy-tailed. Typical values of the distribution parameters for BT and DT mea-

surements [3] are given in Table 3.2, and the respective densities are plotted in Figure 3.3.

B ��� 	
� �
� 	��

BT(CP) 0.45 1.25 1.3 ��� 21.5 129 ���
DT(CP) 1 1.15 18 ��� - -
DT(CO) 0.25 0.75 8 ��� 1.0 125 ���

Table 3.2: Model parameters for the impulse length densities from BT and DT measurements
(after [3]).
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Figure 3.4: Impulse detection techniques.

Impulse detection techniques

As with all studies of stochastic processes, impulse noise studies rely heavily on data from

measurements to derive empirical distributions or verify the correctness of proposed models. A

practical issue in impulse noise measurements is the need to detect impulse events and identify

correctly their temporal boundaries in a stream of noise signal samples that also contains non-

impulsive background noise. An appropriate impulse definition is required in order to produce

credible statistics of the impulse noise. It is therefore important to comment on the impulse

detection algorithms.

Amplitude threshold detection. A widely used impulse detection method is the hard amplitude

threshold detection (Figure 3.4(a)), which was first proposed by Kaenel et al. [99]. An impulse

is considered to have commenced when the noise amplitude exceeds the absolute value of a

specified voltage threshold1 � � � H and ends when the noise level falls under another threshold
� � � � for a sufficiently long period of time S � � . The drawback of this method it that the defini-

tion of impulse length and the detection of an impulse altogether is threshold dependent. If the

threshold values are not set appropriately, there may be a number of unwanted scenarios. For

example, background noise with large peak-to-peak amplitude may trigger the impulse detec-

tion algorithm. Also, impulse events which should be classified as one impulse of long duration

may actually be detected as multiple short impulses.

1The original proposal by Kaenel et al. [99] was to assume the impulse spans for the whole time it is above the
lower level ����� 
 . Nevertheless, the definition given here is also widely in use.
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Statistical impulse detection. To avoid the deficiencies of the hard amplitude threshold detec-

tion, a statistical method for impulse localisation has been developed by Mann, McLaughlin,

and Levey [87]. In this technique, a statistical measure of the background noise before an

impulse event is calculated and then compared through a sliding window with subsequent over-

lapping sections of the signal (Figure 3.4(b)). A significant deviation in the measure would

indicate an impulse. There are several possible statistical measures that could be used for im-

pulse detection. The approach used in [87] is to calculate amplitude histograms and compare

them with a chi-squared test, which is defined as:

� � �
� 	 H
�

��� �
��� � � @ � � �@ �

I
(3.8)

where N is the number of histogram bins,
� � is the value of the � -th observed bin, and

@ � is

the value of the � -th expected bin. If a window is marked as containing an impulse by the chi-

square check, an additional check is performed whether significant amplitudes are present in the

window and only if this is true is the window declared to contain an impulse. A potential diffi-

culty in this method is setting appropriately the values of the chi-squared threshold, the window

length and the window step. Disadvantages of the technique are the time resolution smearing

introduced by the step movement of the window, as well as the relatively high computational

complexity.

Comparison. By comparing impulse statistics of the same data set obtained with both impulse

detection methods, it was found in [87] that impulse lengths detected with the statistical method

exhibit a more heavy-tailed distribution than if detected with the hard threshold technique.

This is an indication that some impulse events detected statistically as long impulses, were

identified with the hard threshold as a series of shorter impulses. Therefore, the statistical

impulse detection method is preferable if accurate statistics of impulse noise are to be obtained.

3.2.4 Impulse spectral modelling

It was proposed in [3] to model statistically the impulse spectral characteristics by means of

the auto-correlation function (ACF). It is well known (see e.g. [100]) that the ACF of a signal

holds its spectral properties and is related to its power spectral density (PSD) via the Fourier

transform:
� 919 � 8 � � � � � 919 ��� ��
 � 
 �	 �

� 919 ��� � � 	 
 ��� � � . ��I
(3.9)
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where
� 919 ��� � is the ACF2, and

� 919 � 8 � - the PSD. The normalised ACF of an impulse can be

represented as a sum of cosine-modulated decaying exponential functions:

�� 919 ��� � �
��
� � H � � � � � � � � � � � 	���� � � � I (3.10)

where
�� 919 ��� � is the approximated impulse autocorrelation function and the time delay

�
would

be replaced in the discrete case by samples. Parameters in this model are � � and � � , � �
� I � I � � � I�� , of which � � define the frequencies of the cosines, and � � represent the decay of

the exponential functions. The value of
�

, i.e. the number of necessary cosine-modulated

exponentials depends on the required precision, as well as on the particular data set that needs

to be modelled. The latter is related to the differences between the set up of DT and BT impulse

measurements, the results of which were used as a base of this model. The DT equipment

recorded impulses at a sampling rate of 10.24 MHz in a 400 � s recording window, of which

200 � s are pre-trigger samples [81–83]. The BT equipment used a 16 ms recording window at

a sampling rate of 30 MHz [84, 85]. Another important difference is that the BT equipment was

connected to the telephone line through the high-pass side of splitters (see Section 2.5, p. 13).

As a result the DT data, which was recorded without the use of splitters, has significantly more

energy at low frequencies than the BT data. This leads to differences in the spectral modelling

and parameter estimation for the BT and DT data sets.

Autocorrelation function model for the BT data

In the case of the BT data, it was found that the ACF could be modelled well with only one

cosine-modulated exponential [3]. An estimation of the model parameters, �� and �� , can be

obtained from respectively the normalised zero crossings rate and the decay rate of each impulse

ACF.

Zero crossings rate. The empirically obtained zero crossing histograms for BT data are complex

in structure and therefore are approximated with a finite mixture model (see e.g. [102]) of three

2The autocorrelation ���	� is defined as a function only of the time lag 
 because the ACF here describes individ-
ual impulses. It does not imply that the impulse noise is wide-sense stationary (see e.g. [101]) - a train of impulse
events is indeed a non-stationary random process.
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Gaussian probability density functions (pdfs) [3]:

8 � � � �
��

� � H
� �� � � � � �

	�� 
 	 � � � 
 ; ��� 
� I (3.11)

where
� � and � � are the mean and the standard deviation, and � � is the weight of each Gaussian

component. The zero crossings rate for BT data was found to be line dependent [3] and there-

fore [4] defines a default set of parameters plus several alternatives derived from various lines.

The default parameter values are presented in Table 3.3 and a histogram of the zero crossing

rate generated from the default mixture model is shown in Figure 3.5.

Mixing Mean ��� Std.dev. ���
proportions

2.396284e-01 1.151241e-01 2.543812e-02
5.613619e-01 4.864239e-01 1.786954e-01
1.990133e-01 6.403411e-01 9.304163e-03

Table 3.3: Default model parameters of the Gaussian mixture model for ACF zero crossing rate
� (after [4]).
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Figure 3.5: Histogram of ACF zero crossing rate � generated with the Gaussian mixture model.

Decay rate. The analysis showed that the decay rate � for the BT data does not depend on the

studied telephone line but is dependent on the impulse length. To reflect the latter the impulse

duration was divided in ranges and decay rate histograms were constructed for each range.

It was found that for the BT data these histograms were well approximated using a standard

Gaussian pdf3 [3]. A summary of the impulse length ranges and the corresponding Gaussian

distribution parameters are shown in Table 3.4.

ACF generation algorithm. With the statistical models for cosine frequencies � and decay rates

3Note that the decay rate can only take positive values. Mathematically the Gaussian pdf is capable of generating
negative values, but negative decay rates are physically meaningless in the presented ACF model.
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Event length ( � s) Events in range (%) Mean ( � s) Variance ( � s � )

shortest 0 - 1 1.9 3.832230e-02 4.112868e-05
short 1 - 3 62.6 2.666544e-02 6.296414e-05
medium 3 - 10 25.8 1.073394e-02 1.346540e-05
long � 10 9.7 3.073201e-02 2.652703e-06

Table 3.4: Impulse length ranges and default Gaussian model parameters for ACF decay rate
� (after [3] and [4]).

� , it is possible to generate impulse autocorrelation functions. Firstly, an impulse duration

is generated from the length distribution defined in Equation 3.7. Depending on the range in

which the length falls, the appropriate Gaussian pdf is evaluated to give the exponential decay

rate �� . The zero crossing Gaussian mixture (3.11) with parameters corresponding to the line in

consideration is evaluated to produce the estimate �� . Finally, a synthetic autocorrelation func-

tion is generated by substituting the values of �� and �� in (3.10). Each ACF generated in this

way will be different and will provide a statistically correct representation of the spectral char-

acteristics of the impulse, since the ACF parameters were drawn from statistical distributions

based on measured data.

Statistical analysis of the autocorrelation functions for DT data

Due to the high energy level in the low end of the impulse spectra, the autocorrelation functions

of the DT data require a model different from that for the BT data. It is evident from the cumu-

lative distribution of the number of peaks in the impulse spectra (Figure 3.6), that less than 50%

of the DT impulses have only one significant peak in their spectrum and their autocorrelation

functions can be approximated with the ACF model for BT data. However, modelling the ACF

for DT data with three cosine-modulated exponentials would cover 80% of the cases and offers

a good trade-off between accuracy and model complexity. This means that the ACF model for

DT data requires the estimation of six parameters. The cosine frequencies � H
, � � , and � � can

be obtained from the distributions of the frequencies of each of the three peaks. The decay rates

� H
, � � , and � � can be related to the bandwidth of each of the three peaks through the Fourier

transform theory [3].

Figure 3.74 shows results from novel analysis of the three highest peaks and their respective

4These graphs have also been published in [3].
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Figure 3.6: Cumulative distribution of number of peaks in power spectral density for DT data.

bandwidth distributions for DT data5.

Spectral peaks. All three highest peaks have histograms similar in shape to that of the zero

crossing distribution in Figure 3.5, so one possibility is to be modelled with a Gaussian mix-

ture as in the case of BT data. It is also evident that the highest peak is concentrated at low

frequencies, whereas the second and third highest peaks show clear signs of concentration in

two distinct spectral regions. This leads to a second possibility to model each frequency � H
,

� � , and � � with a single Gaussian distribution. However, the suitability of this approach can

be evaluated only after further analysis of the correlation between the peak heights and their

frequency distribution. No comment can be made on whether the frequency distributions for

DT data are telephone line dependent since line information was not present in the data set used

in this study.

Peak bandwidths. The distribution of the peak bandwidths of the three highest peaks have

similar shapes which can be modelled with a single distribution, as in the case of BT data. The

dependence of the bandwidth statistics on impulse length is subject to further investigation.

The presented results provide foundation on which the statistical models of the parameters � H
,

� � , � � , � H
, � � , and � � can be defined and quantified and it is hoped that this analysis will

stimulate further research in the field.

5Thanks to W. Henkel, currently with Telecommunications Research Centre, Vienna, Austria, and Th. Kessler,
currently with T-Systems Nova GmbH., Darmstadt, Germany for providing data from DT measurements.
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Figure 3.7: Distribution of three highest peaks and their bandwidths in frequency domain for
DT data.
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Spectral peak detection

As with the impulse detection in the time domain, correct peak detection in the frequency

domain is an essential issue for producing appropriate spectral statistics of impulse noise and

will be discussed in more detail.

Hill climbing algorithm. The peak detection technique used for the analysis above is based on

the hill climbing algorithm, which is widely used in the areas of optimisation, data bases and

artificial intelligence in general (see e.g. [103]). The hill climbing technique is good at finding

local maxima and this is essentially what is needed for peak detection. In order to seek out only

the significant peaks in the spectrum, two threshold values have been introduced (Figure 3.8).

The “uphill” threshold
� � ��� from the nearest local minimum is used to indicate whether the

local maximum is large enough to be of interest. The “downhill” threshold
� � � 	 from the

already detected local maximum marks the beginning of a local minimum and a search for new

maximum starts.

0

Sth+

Sth−

Power

Frequency

Figure 3.8: Peak detection in impulse power spectra with hill climbing algorithm.

Algorithm modifications. Unfortunately, the power spectral densities of real impulses (Fig-

ure 3.9) are by far not so smooth as in the ideal case. The presence of ripples with deep minima

in the spectrum is a major hindrance for the hill climbing algorithm. In addition, as with all

threshold algorithms, there is an inherent difficulty in determining appropriate values for the

thresholds. Several measures have been taken to ensure correct spectral peak detection:

� spectral curve filtering, which in practice was implemented as averaging over a sliding

window. A trade-off has to be found between the requirements for large window to

smooth better the curve, and small window, so that not to distort important information

about the peak amplitude and bandwidth. The sliding window was set manually after
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Figure 3.9: Autocorrelation function and power spectral density of an impulse from DT mea-
surements.

examination of large number of impulse spectra;

� spectrum specific threshold values. The thresholds
� � � � and

� � � 	 are set separately for

each spectral density as a proportion of the maximum observed value in the spectrum.

This ensures that all significant peaks for each spectrum will be detected;

Figure 3.10(a) demonstrates the peaks detected in the spectrum of the impulse from Figure 3.9

with hill climbing and the above two modifications. A visual inspection of the results shows that

several local maxima were detected on what should be regarded as a single peak. To prevent

this, additional improvements were brought in:

� adaptive negative threshold. The threshold
� � � 	 is set independently for each peak to be

the maximum of a reference threshold value
� ���"� � � 	 , and some proportion of the value

of the local maximum
� ! � 
 ����9K) � ;

�
= 2

	
3 dB was found to give good results;

� double pass. The peak search is performed in both directions starting with lowest and

highest frequency respectively. After comparison of the results the peaks that were de-

tected only in one direction of the peak searches are discarded.

Performance. The additional modifications allow the hill climbing algorithm to detect correctly

peaks with ripples as can be seen from Figure 3.10(b). Further improvements to this algorithm
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or other peak detection methods can certainly be implemented, but this technique performed

sufficiently well to produce the peak statistics results presented in the previous section.
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Figure 3.10: False peak detection (a) and correct peak detection (b) after additional hill climb-
ing algorithm modifications, plotted in logarithmic (left) and linear (right) scales.

3.2.5 Impulse generation with appropriate temporal and spectral characteristics

Combining the spectral and time domain properties of a stochastic signal is not a trivial task,

since any filtering to obtain desired frequency characteristics would modify the time domain

characteristics and vice versa. It is possible, however, to generate stochastic processes with pre-
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defined distribution and correlation properties using a technique developed by Tough and Ward

[90]. The correlation properties can in turn be related to the spectrum as shown before, therefore

such an approach provides a solution to the problem. The Tough-Ward method employs a

memoryless nonlinear transform (MNLT) to map between a zero-mean, unit-variance Gaussian

pdf and the desired pdf, which in the general case could be arbitrary. The MNLT is used to

calculate the relationship between the correlation coefficients of the two stochastic processes.

The impulse generation would then consist in imposing a correlation on a Gaussian sequence,

which after MNLT would produce an output sequence with both the required pdf and correlation

structure.

Theoretical analysis

The MNLT is obtained by equating the cumulative distribution functions (cdf)6 of the zero-

mean unit variance Gaussian process and the required process. This is where the Weibull

distribution for impulse amplitudes has advantage over the generalised exponential, because

it allows easier analytical handling of the MNLT equation. For the double Weibull distribution

defined in (3.3), the MNLT is given by:


 �� �
� � � 	 � � 	 
 	 H

� 	 � � ��� � � . � � � �� � � 
 �9 � 	 9 � 
 ; � . @ � � (3.12)

The solution to Equation 3.12 would yield [3]7:

� �
	�

��

� H
����� � H	�

��� � 9=; � � �����

H ; 
 I @ � � I � � �

� � H
� ��� � H

� 	 	�

��� � 9=; � � �����
H ; 
 I @�� � I � � �

�
(3.13)

An example of the relationship between
@

and
�

has been plotted in Figure 3.11(a). Using the

results in [90], it can be shown that the relationship between the input Gaussian correlation

coefficients,
� �

, and the desired output Weibull correlation coefficients,

�� � � � � ��R ��


, is given

by:

�� � � � � ��R ��
 � �

� � ��6 � �
� � ��R � 6
�
6 ��� � 
 �	 �

� 	 9 
 ; � � 6 � @� � � � . @ � � I
(3.14)

6The proposed MNLT actually equates the complementary cumulative distribution functions (ccdf), defined in
the general case as ����������! #"$�&% � ���

, but the term “cdf” was used in the original work of Tough and Ward [90]
and is left unchanged in this discussion.

7Note that there is an error in [3]: the solution of the Gaussian-to-double-Weibull MNLT equation for ')(+*
should be with a negative sign.
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Figure 3.11: Graphical representation of a Gaussian-to-Weibull (a) MNLT and (b) correlations
for double Weibull density with � � �����	��


and �
� �������
.

where
�

is given in (3.13) and
� 6

are Hermite polynomials of
�

-th degree defined as:

� 6 ����� � � � � � 6 /���� ��� � �
. 6
. � 6 /���� � � � � � � (3.15)

The integral in (3.14) can be evaluated numerically and the resulting polynomial is used to

generate a look-up table which gives the relation between the input and output correlation

coefficients. The computational complexity of this process is relatively high but it should be

noted that it has to be performed only once. An example of relationship between correlations

is shown in Figure 3.11(b). Note also that it is possible to evaluate numerically the MNLT and

the relationship between correlations for the generalised exponential distribution, which was

the original proposal for impulse amplitude modelling (see section 3.2.3, p. 37).

Impulse generation algorithm

After the initial analysis and calculations, the actual impulse generation is carried out using the

following algorithm [3]:

� Evaluate the impulse length pdf to obtain impulse duration.

� Generate a synthetic autocorrelation function using the length, the exponential decay, and
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Figure 3.12: Example of Tough-Ward impulse generation for an impulse of length 26.7 � s.

the zero-crossing pdfs.

� Map the required output correlation to the input correlation in the Tough-Ward look-up

table.

� Design a FIR filter with spectrum corresponding to the input correlation.

� Filter a Gaussian sequence of the required length with the FIR filter, thus imposing the

required input correlation structure

� Apply MNLT on the filtered Gaussian sequence to obtain an impulse with the desired

amplitude and spectral characteristics.

The algorithm is repeated for each required impulse and the computational complexity in the

algorithm is dominated by the need to design a new a FIR filter for each iteration.

Performance of the impulse generator

The performance of the impulse generating algorithm is demonstrated in Figure 3.12. The

generated impulse is shown in both the time and frequency domain, and the desired spectrum

calculated from the synthesised autocorrelation function is plotted in the lowest graph. The

results demonstrate that this impulse generation method achieves realistic impulse properties

both in the time and frequency domain.
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Figure 3.13: Markov renewal model of impulse noise inter-arrival times.

3.2.6 Inter-arrival times

The train of noise impulses can be regarded as a renewal process, i.e. series of random events

in which the intervals between events are independent and identically distributed. Inter-arrival

times between impulses exhibit a complex statistical behaviour. Their range is extremely large

- various studies point out values from � � � 	�� to � � � � s. Also, the probability of small inter-

arrival intervals is very high, and the tail of the distribution is very long and irregular. Finally,

inter-arrival times evince a significant degree of clustering, i.e. consecutive intervals tend to be

of comparable range. It was shown by Levey and McLaughlin that the statistical characteristics

of inter-arrival times can be modelled successfully with a Markov renewal process [5, 84, 86].

Markov renewal model of inter-arrival times

This section will present only features of the Markov processes which will be used for subse-

quent analysis in this work. The theory of Markov models is well established and the reader

can find a thorough background on the subject in e.g. [91, 104, 105].

For the purpose of modelling, the inter-arrival times are divided into ranges S � , such that

S ��� � R � 	 H1I�R � � , � � � I � I � � � I � 
�� � � R � � R�H � 
�
�
 � R ���
	 � . Each Markov state

corresponds to a time range, and the specific time within each range is drawn from an appropri-

ate distribution with density function
8�Q � ��R � , � � � I � � � I � 
 ,

R
� S � , which in the general case

can be arbitrary. The inter-arrival times model has been summarised graphically in Figure 3.13.
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A Markov chain is described by its transition probability matrix
� ����� defined as:

� ����� � � � � 
 
 �

�������
�

� H�H � H � 
�
�
 � H ���
� � H � � � 
�
�
 � � ���

...
� ��� H � � � � 
�
�
 � �������

��������
�
�

(3.16)

Here � � 
 are the probabilities of transition from state � to state � , which must satisfy the require-

ments � ��
 � �
and � ���


 � H � � 
 � � for � I � � � I � � � I � 
 .

The introduction of density functions
8*Q � ��R � to describe inter-arrival times statistics in each state

is equivalent to generalising the Markov chain to a semi-Markov process, also called Markov

renewal process (MRP) [91, 106]. In order to specify fully the MRP for impulse noise, it is

necessary to determine the number of Markov states, the time range each state corresponds to,

and the distribution within each time range.

Number of states. Intuitively it can be assumed that a larger number of states,
� 
 , in the

Markov chain would lead to higher accuracy in the inter-arrival times modelling. In the extreme

case each separate inter-arrival time can be deemed to be a Markov state but such a model

would certainly be excessively complex. The number of states is therefore a trade-off between

accuracy and complexity. It was pointed out in [5] that the Markov model need not be complex

in order to benefit from its potential. A practical model of inter-arrival times can be constructed

with only two states and a very powerful model can be achieved with as few as four states.

Time ranges. The ranges of inter-arrival times assigned to each state are determined by exami-

nation of the independence of times within each state and of the dependence of times between

states. A method to test inter-state dependence was proposed in [107] where the observed

number of transitions is compared with the expected number of transitions by means of a chi-

squared type of test. This test can both demonstrate the existence of clustering in inter-arrival

times and help introduce the correct level of clustering in the MRP via the transition probabili-

ties. For full details about analysis of clustering of impulse noise see [5].

Density functions. The choice of density functions depends on the partitioning of inter-arrival

times range and the data set that is to be modelled. It was pointed out in [5, 84, 86] that differ-

ent inter-arrival time ranges from the same model may have to be approximated with different

55



xDSL line noise impairments

distributions in order to achieve best fit to empirical data. The Pareto and exponential8 distri-

butions were proposed as possible options.

The Pareto, or hyperbolic distribution, is a good model for random variables with a slowly

decaying density tail. The general form of the Pareto density function is given by (see e.g.

[108]): 8 :J��� ��R � �
� R���R � � H I R � R �<I R � � � I � � � I

(3.17)

where
R �

is a scale, and
�

is a shape parameter.

The Poisson process is widely used for modelling random series of events. The inter-arrival

times between events in the Poisson process have an exponential pdf defined as (see e.g. [106]):

8 � 9�: ��R � � � � 	�� � I R � � I
(3.18)

where
�

is a shape parameter.

Four-state Markov renewal model of impulse noise

It was proposed in [5, 84, 86] to partition the time for a four-state MRP model to ranges � � I � � ,� � I � � � , � � � I � ��� � , and � � ��� I � � seconds. Data sets from several telephone lines were used to

derive this model and in all cases the Pareto distribution was a good fit for the highest state, i.e.

the longest times that form the tail of the distribution. However, in lower states, the exponential

distribution appeared to be a better fit for some data sets. Therefore, two different models were

proposed [5] - Model 1, in which all time ranges are approximated with Pareto distribution,

and Model 2, in which some time ranges are Pareto, and others exponentially distributed. The

parameters for both models are given in Table 3.5.

The empirical Markov transition probabilities were also found to be line specific [5]. Neverthe-

less, the statistical characteristics of most data sets had a reasonable level of consistency and

8The exponential distribution is sometimes referred to as Poisson distribution because it can fully specify a

Poisson process. Strictly speaking, however, the Poisson distribution is defined as
 #"$��� � � " �����	� ��

������������ �

" �* ����������� and gives the probability that
"

number of events will occur within a time period � .
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State 1 2 3 4
Range ����� s ���������	� s �
���������	��� s �
�
�����

Model 1 Pareto�
������� ����� �

��������� �
! �#" �$����� �%� �#& ��'(���(�
�
Model 2 Exponential Pareto Exponential Pareto)

� ��'(� � �*' �
� ������� �
! )+" �,��� ���#� � � & ��'(���(�
�

Table 3.5: Parameter values for a four-state Markov renewal model of inter-arrival times (af-
ter [5]).

this allowed to derive transition probability estimates averaged over several studied lines:

�	� 
 � �

������
�
��� � � � ��� � 
 � ��� � � � ��� � ���
����� � � ��� � ��
 ��� ��� � ��� � � �
��� 
 � 
 ��� � � � ��� � � � ��� � � �
��� 
�
 � ��� � � 
 ��� � � � ��� 
 � �

�������
�
�

(3.19)

This transition probability matrix is valid for both models specified in Table 3.5.
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Figure 3.14: Probability density of inter-arrival times generated with a four-state Markov re-
newal model.

Log-log plots of the histograms of inter-arrival times generated from both models are shown

in Figure 3.14. The graphs seem somewhat erratic with abrupt jumps especially in the tails,

but this resembles the actual behaviour observed in empirical results. Histograms of intervals

generated with Model 2 are plotted on linear axes in Figure 3.15(a) and zoom on the tail is
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Figure 3.15: Probability density of inter-arrival times generated with a four-state Markov re-
newal process - Model 2.

shown in Figure 3.15(b). As in the empirical histograms (see e.g. Figures 1 and 2 in [5]), the

vast majority of inter-arrival times are concentrated in the shortest range, and the tail is very

long and with complex behaviour that differs significantly from the rest of the distribution.

Two-state Markov renewal model of impulse noise

The four-state MRP described in the previous section does provide accurate inter-arrival times

modelling. However, a two-state MRP has also been proposed and standardised by ETSI [4]

for xDSL testing and simulation purposes. The latter model concentrates on inter-arrival times

of up to 1 s, which is sufficient to test the modem recovery times. It should also be noted that

although the range of 1 s is small in comparison with the whole range of observed inter-arrival

times (up to � � � s [5]), a large proportion of the inter-arrival time occurrences fall within this 1

s range (50% to 90% [5]). It was shown in [3] that a two-state MRP is adequate for modelling

inter-arrival times of up to 1 s and no significant advantage is to be gained by adopting a more

complex model.

The two-state MRP model specified in [4] divides the inter-arrival times in ranges of less and

more than 1 ms. The lower state (shorter times) is modelled with exponential, and the higher

state - with Pareto distribution. The values of the distribution parameters are given in Table 3.6.
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State / Distribution 1 Exponential 2 Pareto

Range/Parameter ����� ms
) ����� � � ��� � ms

� �$�����
Note that � and � are computed such that � is in ms.

Table 3.6: Parameter values for a two-state Markov renewal model of inter-arrival times (af-
ter [4]).

The transition probabilities matrix is defined as:

� � 
 � �
�� ��� � ��� �
����� ��� �

�� �
(3.20)

The histogram of inter-arrival times generated from this model and a zoom of the density tail are

shown in Figure 3.16. The results resemble closely the empirical histograms shown in Figures

4 and 5 in [3].
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Figure 3.16: Probability density of inter-arrival times generated with a two-state Markov re-
newal process.

3.3 Crosstalk

Crosstalk between pairs in a multi-pair cable is another significant impairment for DSL systems

alongside impulse noise. The cause of crosstalk is the electro-magnetic coupling between the
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wires in a cable, or rather the imbalances in this coupling. As a result signals transmitted over

one pair induce currents in the other pairs of the same cable, thus causing interference. The

induced signals travel in both directions in the disturbed pairs. Those that continue in the same

direction as the interfering signal add up to form far-end crosstalk (FEXT), and those that come

back towards the source of the interferer add up to form the near-end crosstalk (NEXT). This

is summarised graphically in Figure 3.17, where the thickness of the lines showing crosstalk

gives a rough indication of the relative level of interference.

Crosstalking
transmitter

Near−end
receiver

Crosstalking
transmitter

Far−end
receiver

Cable bundle

FEXT

Pair A

Pair B

Cable bundle

NEXT

Pair A

Pair B

Figure 3.17: Definition of near- and far-end crosstalk (NEXT and FEXT).

3.3.1 Sources of crosstalk

With the rise in popularity of DSL services, it is increasingly possible that several pairs in a

telephone cable will be used for DSL transmission. The DSL signals in one cable may be of

the same DSL variety, but in the general case may be any combination of ISDN, HDSL, ADSL,

SHDSL, VDSL, and perhaps non-standard equipment (Figure 3.18). The only DSL unlikely to

be present in the same bundle is T1/E1, because their power spectrum is so aggressive to other

transmission systems that they are normally (but not always) segregated in dedicated binder

groups [6].

Cable bundle

ISDN

SHDSL

VDSL

?

ADSL

HDSL

Subscriber 1

Subscriber 2

Figure 3.18: Possible sources of crosstalk.

Since the spectra of all DSL services overlap at least partially (see Section 3.3.4), any crosstalk

from one DSL pair would represent interference to the DSL signal in the disturbed pair. If the
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crosstalk to one DSL signal is caused by DSL of the same variety, it will be referred to in this

work as kindred crosstalk, otherwise will be called alien crosstalk.

3.3.2 Crosstalk noise in the time domain

The majority of studies on crosstalk concentrate on its spectral features, since crosstalk in-

terference lends itself better to characterisation in the frequency domain. This is because the

underlying induction process is frequency dependent, and the power spectral densities (PSDs),

or at least PSD masks, of the source signals of crosstalk interference, are readily available.

Therefore, the studies of crosstalk in the time domain are relatively scarce.

A study by Kerpez [109] argued that both NEXT and FEXT are approximately Gaussian dis-

tributed at the receiver. Due to the frequency-dependent nature of crosstalk this assumption is

clearly not true for crosstalk from a single source. However, when different contributors from

different lines are added up, the central limit theorem (see e.g. [101]) loosely applies, and the

distribution of the sum tends to be Gaussian. It is claimed in [109] that this holds for cases of

practical interest. However, it is pointed out in [6] that while the deviation between the Gaus-

sian and the real distribution may not be large, the difference is important in some cases such

as development of crosstalk mitigation techniques.

The issue of crosstalk stationarity was considered by Pederson and Falconer [110], who found

that crosstalk may not be stationary unless sampled at exactly the same rate as the crosstalk

source signal. As a result DSL systems with higher sampling rates will see periodicity in the

crosstalk from lines with lower sampling rate. If two DSL systems are synchronised to the same

central office clock, the overall crosstalk will be cyclostationary (see e.g. [101]) with period

equal to the least common multiple of the sampling periods of the two DSLs.

3.3.3 Crosstalk spectral modelling

The level of crosstalk is greatly affected by the specific loop topology and implementation.

Important factors are for example the length and location of the overlap between the interfering

and interfered loops, the specific pairs of the bundle and the wire cross-section used in each

segment of the line, the length of the segments and connections between them, the presence of

bridge taps. For specifications of test loop topologies see e.g. [1, 11].
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Nevertheless, without loss of generality it can be assumed in crosstalk modelling that the inter-

fering and interfered loops are of equal length. If these lengths differ, as shown in Figure 3.19,

attenuated NEXT and unequal-level FEXT are observed. Extending a crosstalk model to take

into account different loop lengths is trivial and details on this can be found in e.g. [32]. All

other loop topology factors are taken into account by means of the statistical distribution of the

crosstalk coupling coefficients as discussed later.

TxRxA2

TxRxB2

TxRxA1TxRxA1

TxRxB1TxRxB1
NEXT Pair B

Pair A

Pair B

Pair A

FEXT

Figure 3.19: NEXT and FEXT with different lengths of interfering and interfered loops.

Crosstalk is modelled in the frequency domain by means of the crosstalk power transfer func-

tion
	 � 9 � � 8 I�$ � 	 �

, which relates the power spectral density of the crosstalk interference
� 9 � � 8 �

to the spectral density of the disturbing signal
� 
+� 
 � 8 � :

� 9 � � 8 � � 	 � 9 � � 8 I�$ � 	 � 
 � 
+� 
 � 8 � � (3.21)

The crosstalk transfer function depends on the electro-magnetic coupling and the attenuation in

the line, which in turn are functions of both the signal frequency
8

and the line length
$
, hence

the functional dependence on these variables.

Crosstalk power transfer functions

Analytical expressions for the NEXT and FEXT transfer functions can be obtained by integrat-

ing the elementary contributions of induced signal along the line. Detailed analysis of capacitive

and inductive coupling and imbalances, and derivations of the crosstalk transfer function can

be found in e.g. [6, 32, 33]. Only the final results of this analysis will be presented here.

The NEXT power transfer function is given by [32, 33]:

	 � 6 � 9 � � 8 I�$ � 	 � � � 6 �+9 � 8 H�� � � � � � 	 � 
 � � ! � � � 6 �+9 � 8 H�� � I
(3.22)

where
� 6 � 9 � is a coupling coefficient between the two pairs in consideration, and � is a line

attenuation coefficient. For the frequencies and loop lengths of practical interest for most DSL
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systems, the term � 	 � 
 � � ! tends to zero [32]. This is not true for SHDSL, however, because its

frequency band extends to very low frequencies. Nevertheless, substituting the term with zero

in all cases is widely accepted since it only leads to a more conservative estimate.

The FEXT power transfer function has the form [6, 32, 33]:

	 � �1�+9 � � 8 I�$ � 	 � � � �1�+9 � 	 � ! � 6 � � 8 I�$ � 	 � $ 8 � I
(3.23)

where
	 � ! � 6 � � 8 I�$ � 	

is the line transfer function, and
� �1�+9 � is again a coupling coefficient be-

tween the disturbing and disturbed pairs.

The coupling coefficients
� 6 �+9 � and

� �J�+9 � depend on the electrical parameters of the cable, the

cable structure, the relative position of the pairs involved, and are also influenced by aging and

imperfections in the cable, bridge taps, wire connections and other factors. Therefore these

coefficients are different for any pair of pairs and for any cable and can be considered random

variables.

Statistical models of coupling coefficients

The statistical models of the crosstalk transfer functions are usually defined for some percentile

of the worst case. Such a definition ensures that data rates and coverage of digital transmission

systems are guaranteed for the majority of crosstalk conditions. For DSL services, the accepted

norm is the 1% worst-case values of the crosstalk transfer function.

There have been a variety of empirical studies of crosstalk in the literature. Some interesting

studies include that of Lin [111], Pollakowski [112], and Valenti [113], all of whom reported

numerous measurement results. Unger proposed in [114] an expression for the 1% worst-case

NEXT transfer function, where
� 6 � 9 � is a function of the number of interfering pairs in the

bundle. However, Huang and Werner [115] argued that with a binder group full of interferers,

the 1% worst-case crosstalk level is independent of the number of pairs. Nevertheless, for the

time being the accepted models use the Unger approach. For a 50-pair binder group the 1%

worst-case coupling constants are defined as [6]9:

� 6 � 9 � � � � 	 H � 
 � �
��� �

� � � I
(3.24)

9ANSI T1.413 [11] specifies slightly lower values for the coupling constants, namely � � � � �
� * � ��� ����� � *	� ��

���������� � ��� �

and �
�
� � � � ��� � *	� 
 � � ��������� � ��� � .
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� �1� 9 � � � " � � 	 � � 
 � �
��� �

� � � I
(3.25)

where
�

is the number of disturbing pairs in the binder group. These values have been found to

be valid for frequencies to 30 MHz [113].

Line transfer function

Unlike NEXT, the FEXT power transfer function depends substantially on the attenuation on

the line, and therefore knowledge of the line transfer function
	 � ! � 6 � � 8 I�$ � 	

is required in order

to estimate FEXT. It can be shown that [6]:

� ! � 6 � � 8 I�$ � �
� � 
�� /J3�� � � $ �

� 
 
���� ��	� ��

� � � � � $ ��� � � � 
�� � � � ���� 
 

� � � � � $ ��� I
(3.26)

where
� 
 and

� � are the source and load impedances, and tanh and sech are the hyperbolical

tangent and secant functions respectively. The characteristic impedance
� �

and the propagation

constant � of the twisted pair can be expressed as:

� ��� ��� �
� ��� � 
 � � �

� � , � � � � 
 � � � �
� �

� ���� �
� � , ��� �

� I
(3.27)

where
� � � � 8

. The impedance
�

and the admittance
�

of the line per unit length depend

on the resistance
�

, inductance
�

, capacitance
,

, and conductance
�

, which in turn can be

determined from measurements using the following expressions [6]:

� � 8 � ���� � �� E � � E 
 8 � � � 8 � � ! � �O!�� � �J;���� ���H
� � �J;���� � �, � 8 � ��� �

� � � 
 8 	 
 � � � 8 � � � � 
 8 � � (3.28)

where � � E is the copper DC resistance, � E
is a constant characterising the so-called “skin

effect”,
$ �

and
$
� are the low- and high-frequency inductance,

8 � and � are a cut-off frequency

and a parameter characterising the transition between low and high frequencies in the measured

inductance, � � is the so-called “contact” capacitance, and � � , � � , � � , and � � are constants chosen

to fit the measurements.
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3.3.4 Modelling crosstalk from xDSL systems

If the transmit power spectral density of the interfering signal is known, it is possible to evaluate

NEXT and FEXT at the receivers of the disturbed signal by using the appropriate crosstalk

transfer function in Equation 3.21. Definitions of the nominal transmit PSDs for the most

common versions of ISDN, HDSL, ADSL, and SHDSL are given in Appendix A:

� ISDN. The nominal transmit PSD of 2B1Q-modulated ISDN signal is defined in Equa-

tion A.1. Details about the PSDs of 4B3T-modulated ISDN (mostly used in Germany)

and ISDN with synchronised TDD (used in Japan) can be found in e.g. [15].

� HDSL. The HDSL power spectral density specified by Equation A.2 refers to 2B1Q-

modulated HDSL with symbol rate 392 kbaud, i.e. bit rate 786 kbps over one pair. This

means 1.544/2.048 Mbps over HDSL are achieved with two/three pairs respectively. For

details about the PSDs of less common HDSL versions, e.g. 2B1Q-modulated HDSL

with symbol rates 584 kbaud and 1160 kbaud, or CAP-modulated HDSL, see e.g. [22].

� ADSL. The ADSL power spectral densities given in Appendix A refer to the “full” (as

opposed to “light” - see Section 2.5.5, p. 24) version of DMT-modulated ADSL. Be-

cause of the asymmetry in the bit rates, the ADSL signals have different PSDs depending

on whether they are transmitted in the upstream (Equation A.4) or downstream (Equa-

tion A.3) direction. It is assumed that ADSL uses all available subcarriers in each direc-

tion and the total transmit power is set such that the PSD would not exceed the maximum

allowed PSD. Note, however, that unlike ISDN and HDSL, ADSL allows variable bit

rate and in the general case may not use all subcarriers, changing the transmit PSDs

accordingly.

� SHDSL. SHDSL is, like ADSL, a multi-rate transmission technology. The bit rate affects

significantly the symbol rate, and hence the nominal transmit PSD (Equation A.5) of the

16-PAM SHDSL signal. Note also that (A.5) specifies a symmetric PSD mask. Details

about asymmetric PSD masks (optional in North America for 1.536 Mbps and 1.544

Mbps payload) can be found in [2].

The 1% worst-case NEXT power spectral densities from the DSL systems discussed above are

plotted in Figure 3.20. Note it is assumed that the ADSL upstream is a source of NEXT, i.e. the
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Figure 3.20: 1% worst-case level of near-end crosstalk at the customer premises from various
DSL systems.

graph shows NEXT at the customer premises10. Note also it has been intrinsically assumed that

the sources of NEXT are in the immediate vicinity of the sink. In practice, however, there may

be a significant physical separation between the customer premises of different DSL links, in

which case attenuated NEXT will be observed. Nevertheless, this attenuation is insignificant,

since for most loop plants the variation of loop length within one binder group is less than 20%

of the total loop length. As a result the average NEXT is usually about 1 dB less than the

modelled worst-case scenario [32].

3.3.5 Summing crosstalk in a mixed-signal environment

The crosstalk spectral model presented in Section 3.3.3 intrinsically assumes that all crosstalk

interferers in the bundle are of the same type, i.e. have the same PSD. However, the co-existence

of different versions of DSL on the same cable is becoming increasingly common because of

the proliferation of DSL, the emergence of new DSL types, and the process of unbundling,

i.e. simultaneous usage of the loop plant by various operators. Several summation methods

for crosstalk from mixed sources are known in the literature. For the purpose of brevity only

10Sometimes ADSL is used in reverse mode, i.e. the downstream signal is transmitted upstream and vice versa.
Such an arrangement is needed for e.g. web hosting or service providers, who require larger upstream than down-
stream bandwidth. It is much less common than the “orthodox” ADSL use and will therefore not be considered.
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examples for NEXT summation will be given, applying the same summation methods to FEXT

is trivial.

Direct summation method

The most straightforward mixing method is to sum the 1% worst-case crosstalk power contri-

butions of each type of interferer. In the case of NEXT interference from
�

different systems,

the total crosstalk PSD is given as:

� � ' �	���6 � 9 � � 8 I�� H1I � � � I�� � � ��� ��
� � H � 
+� 
 � � 8 � � � � ���� � �6 �+9 � 8 H�� � I

(3.29)

where
� � is the number of systems with PSD

� 
+� 
 � � 8 ��I � � � I � � � I�� , and
� �6 �+9 � � � � 	 H � ) ��� � � �

for a cable bundle of 50 pairs.

However, the direct summation method is fundamentally incorrect [32, 116], since it assumes

that all sources of crosstalk use simultaneously the worst pairs in a binder. From a purely math-

ematical point of view, if all interferers are considered to be of the same type, i.e.
� 
 � 
 � � 8 � �

� 
+� 
 � 8 ��I � � � I � � � I�� , then Equation 3.29 would transform into:

� � ' �	���6 �+9 � � 8 I�� H1I � � � I�� � � � � 
 � 
 � � 8 � � �6 � 9 � 8 H�� � ��
� � H � � � �� I

(3.30)

whereas the original single-type crosstalk model from (3.21), (3.22), and (3.24) would have

predicted:

�?6 �+9 � � 8 I�� H � � � � � � � � � � 
+� 
 � � 8 � � �6 �+9 � 8 H�� ��� ��
� � H � ��� � � � � (3.31)

Since � �� � H � � � �� � � � ���� H � � �
� � �

, it is clear that the direct summation leads to overly pes-

simistic level of interference.

Mean PSD summation method

This method was originally proposed in [116] and consists of mixing the interferers at PSD

level. The equivalent PSD is an arithmetic mean of the PSDs of the interfering signals and the
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total NEXT PSD is given as:

� � ���"� 6GL 
K� �6 � 9 � � 8 I�� H I � � � I�� � � � � ��
� � H � 
+� 
 � � 8 �

� �� �
 � H � 
 � � �6 � 9 � 8 H�� � � ��
��� H � � � � � � � (3.32)

The disadvantage of this method is that it can be overly optimistic, and although it achieves

relatively low average error, its maximum prediction error is large, which is dangerous as it can

lead to failures in the field [117]. A variation of this method is to define the equivalent PSD as

a geometric mean of the various PSDs. The drawback of this definition is that it predicts zero

interference if at least one of the disturbing PSDs is zero.

Annulus summation method

This method, first proposed in [118], requires a system of priority of interferers depending on

how “bad” their crosstalk is. The
� H

interferers from the worst type 1 are given weighting as if

they were causing the crosstalk alone. The second worst
� � interferers are assigned weighting

that would have been assigned by the single-type crosstalk model for disturbers
� H � � to� H � � � , etc. For two disturbers, this method defines NEXT as:

� � M 6<6 �=!��B
 �6 � 9 � � 8 I�� H1I�� � � � � 
 � 
 � � 8 � � �6 �+9 � 8 H�� � � � � �H � � 
+� 
 � � 8 � � �6 � 9 � 8 H�� � � ��� H � � � � � � � � � � � �H�� �
(3.33)

The drawback of the annulus crosstalk summation is that the hierarchy of interferers can be

defined arbitrarily and this would affect the crosstalk levels predicted by the model.

FSAN summation method

This method, named after the Full Service Access Network (FSAN) consortium, was first pro-

posed by Persico and Magnone of CSELT. The NEXT sum is defined here as [119]:

� � � 
 M � �6 � 9 � � 8 I�� H I � � � I�� � � �
� ��

� � H � � 
 � 
 � � 8 � � � � �� 
 H ; � � ���
� � �

� �6 �+9 � 8 H�� � �
(3.34)

This method gives good estimates of the mixed-signal crosstalk [117, 120], is widely accepted

and has become the ANSI standard [121] for summing crosstalk from mixed sources.
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Generalised FSAN or Minkowski-bound summation method

A generalisation of the FSAN method was proposed by Galli and Kerpez [122]. It is based on

exploiting the Minkowski inequality to derive a lower bound of the pessimistic direct summa-

tion method and has the form [123]:

� � D � 6 � � >N
 � � �6 � 9 � � 8 I � I�� H1I � � � I�� � � �
� ��

��� H � � 
+� 
 � � 8 � � � � �� 
 H ; � � � � �6 �+9 � 8 H�� � I � � � � � � (3.35)

Here
�

defines the degree of pessimism. For
� 	 � , the model is the most pessimistic and

coincides with the direct summation method in (3.29), and for
� � ��� �

this model takes the

FSAN form (3.34).

Hölder-bound method

Galli and Kerpez went on to derive another summation method from the direct summation

model based on the Hölder inequality [123]:

� � Hölder �6 � 9 � � 8 I � I�� HJI � � � I�� � � � � 	�� H 	�� � ; � � ��
� � H � � 
+� 
 � � 8 � � � � �� 
 � �

H ; � � �6 � 9 � 8 H�� � I � � � � � �
(3.36)

Again
�

determines how pessimistic the model is. For
� 	 � , the model tends asymptotically

to the direct summation method in (3.29), and for small
�

the model is more optimistic.

The disadvantage of the Minkowski- and Hölder-bound methods is that they do not converge

to the single-type crosstalk model as the spectra of the different disturbers become identical,

although the error has been reported to be small [123].

A comparison between direct summation and the FSAN summation method for two mixed

crosstalk scenarios is shown in Figure 3.21. The direct summation method is on average more

pessimistic by about 1-2 dB than the FSAN method (the graphs have been plotted on linear

scales in order that the difference is more visible).

3.3.6 xDSL spectral compatibility measures

In order to ensure acceptable levels of crosstalk for DSL systems, and thus their stable perfor-

mance, the DSL transmit power must be kept under power spectral density masks defined in
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Figure 3.21: Sum of crosstalk from mixed sources using direct summation and the FSAN
method.

the respective standards. For example, the PSD mask for ADSL over POTS was shown in 2.7,

p.22. These masks are usually selected such that a DSL system is crosstalk compatible both

with systems of its own kind, and with other DSL types. However, the large variety of stan-

dard and non-standard DSL technologies, and the development of new DSL systems, makes

it increasingly difficult to manage the spectrum in the local loop. Spectral compatibility is a

particularly acute problem in an unbundled access network, where there can be little control

over the technology different operators use. Therefore, the UK Office of Telecommunications

(Oftel) introduced an access network frequency plan (ANFP). This plan specifies PSD masks

for long, medium and short loops upstream and is applicable to all transmission systems used

on the BT twisted-pair access network. In this way, the crosstalk interference in the access

network is efficiently controlled. Full information about ANFP can be found in [124].

3.4 Radio frequency interference

Since the twisted pairs that make up the local loop are unshielded and the twisting cannot

provide perfect balance in the electro-magnetic coupling, telephone lines also function as long

aerials. Therefore they can both receive (ingress) and emit (egress) radio frequency interference
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(RFI). It is usually considered that egress radiated from most DSL systems is insignificant

except that from VDSL, which will be tackled via the PSD mask [6, 32]. Therefore, this section

will concentrate mainly on ingress interference.

There are two easily identifiable potential sources of ingress RFI that use frequencies within

the spectra of DSL systems - AM radio and amateur radio.

AM radio.

The AM radio occupies frequencies from 0.55 to 1.6 MHz, which overlap both the ADSL and

VSDL spectra.

It is considered that AM radio does not represent a big impairment to ADSL, because close

proximity to AM transmitter is unlikely (maximum differential-mode interference -70 dBm)

and the balance of the twisted pair is relatively good (60 dB) at the ADSL frequencies [6,

32]. Besides, AM transmission is stable in time, has relatively narrow band (5 kHz) and may

be accounted for during initialisation of the DMT modems, or in the case of single carrier

modulation can be cancelled without serious deterioration of the wideband single carrier signal.

For VDSL frequencies, however, 60 dB line balance is too optimistic, and the interference

levels may go as high as +30 dBm for common and -30 dBm for differential mode. Therefore,

it is expected that tests for AM radio ingress will be included in the final version of VDSL

standards.

Amateur radio (ham).

Ham radios operate in several frequency bands placed between 1.8 MHz and 29 MHz, and use

single sideband modulation with bandwidth of usually around 2.5 kHz. Ham radio signals are

much more bursty than AM radio, firstly because the ham operators tend to change the carrier

frequency relatively often, and also the ham transmitter is silent when no information needs to

be transmitted. Also, at ham frequencies the line balances are lower (around 30 dB [6]). The

ham transmitters are usually low power (starting from around 50 W), but 1.5 kW ham radios are

also possible. The worst case common mode from ham ingress is predicted as +30 dBm, and

the worst-case differential mode - as 0 dBm [32]. Therefore, ham radio may be a significant

impairment to VDSL systems and provisions will be incorporated in the VDSL standards.
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3.5 Conclusion

This chapter has introduced the various sources of noise in telephone lines, with discussion on

the noise statistics and models. Earlier statistical models of impulse noise have been shown

to have a number of short-comings and a recently proposed impulse noise model has been

chosen as the most accurate and complete alternative. The fact that this model allows for

statistical description and generation of noise impulses with appropriate both time domain and

spectral characteristics implies that it will represent accurately impulse noise when used for

DSL studies. Some new work has demonstrated that a distribution of the impulse power in the

time domain can be analytically derived from this model, which lays the basis for theoretical

analysis of the impact of impulse noise on DSL. This impulse noise model can be extended

further to reproduce impulses with more complex spectral contents, and the work on this may

be aided by a new investigation of the impulse spectral features from empirical data that has

been presented here.

It is evident from the discussion on crosstalk that due to variations in the modulations, different

DSL systems generate interference with significantly different spectra. If the crosstalk origi-

nates from mixed signal sources, the use of special summation models is required, of which the

FSAN method seems to combine desirable features with good performance. Finally, it has been

shown that radio frequency interference represents a significant impairment only to VDSL.
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Chapter 4
Simulation of ADSL system in the

presence of impulse noise and crosstalk

4.1 Introduction

The main objective of this work - evaluating the impact of impulse noise and crosstalk on

protocols and services transmitted over digital subscriber lines, is examined in this chapter.

ADSL is of particular interest, since it is the most common DSL technology, but there are still

open questions about its use for reliable delivery of high-bit rate services, other than simple

Internet access, with different quality of service (QoS) requirements to a larger proportion of

the loop plant. Moreover, the results from the analysis of ADSL could also be applied to DMT-

based VDSL systems with framing similar to that in ADSL.

Simulation is a convenient approach to studying communications systems with complex struc-

ture, such as ADSL. The appropriate consolidation of ADSL, impulse noise and crosstalk mod-

els in a single simulation is described, and then the performance of ADSL according to the

above aim is discussed. The performance metrics used in this study are DMT frame and ATM

cell error rates and inter-error intervals (assuming that ATM cells are carried over an ADSL

link), since it is frame and cell errors that are likely to impact services provided over DSL. The

subjective perceived quality of MPEG2 video streamed over ADSL has also been analysed. It

is shown that different framing parameter settings adversely affect the performance of ADSL

in impulse noise. This performance has also been found to worsen in the presence of alien

crosstalk in comparison with the case of only kindred crosstalk.

4.2 General considerations

The main objective of this simulation is to study the impact of impulse noise on protocols

and applications transmitted over ADSL (Figure 4.1). There are, however, many possible data

formats, various criteria to evaluate the transmission performance, and a number of parameters
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Figure 4.1: Scope of work.

which can influence that performance. It is therefore important to set specific simulation targets.

4.2.1 Data formats

There are numerous possible protocol stack configurations over DSL (see Section 2.4, p. 11).

Several specific data types will be considered in this study.

ATM cells

Asynchronous transfer mode (ATM) is often quoted as one of the preferred protocols for trans-

mission over DSL. Impulse noise introduces significant errors in the DSL system. ATM, how-

ever, has been primarily designed for a near error-free transmission medium. Moreover, differ-

ent applications have different performance requirements towards lower protocol layers. Voice,

for example, requires low latency and tolerable error rate, whereas data requires lossless trans-

fers where errors can only be overcome by retransmission. If ATM is used as a link protocol, it

is important to have information about the cell errors caused by impulse noise. Studying these

errors and how they are influenced by different ADSL configurations is one of the primary

targets in the presented simulations.

ADSL mux data frames

In some ADSL configurations user data may be transmitted over ADSL as a bit stream without

an intermediate protocol. The performance of ADSL when carrying user information in such a

mode can be evaluated by means of the ADSL mux data frame (reference point A in Figure 4.2).

Therefore, this work also considers the mux data frame errors due to impulse noise.
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MPEG-2 video stream

An MPEG-2 video stream has been chosen as a specific example of an application using ADSL

as a transmission medium. The impact of impulse noise on the visual quality of a test video

sequence carried directly over ADSL as a bit stream has been evaluated in this study.

4.2.2 Performance metrics

Due to the influence of data formatting at different layers of the protocol stack and the complex

statistical nature of impulse noise, simple bit or byte error rates are insufficient to characterise

fully the impact of impulse noise on protocols and services carried over ADSL.

Error rates

If ATM is used as an intermediate protocol over ADSL, cell errors are more likely to impact

services carried on top as a single byte error may deem a whole cell unusable. Therefore, the

ATM cell error rate has been used as one of the performance metrics in this study.

The ADSL frame error rate has also been analysed in the simulations, since frame errors are

relevant to the performance of user bit streams carried over ADSL. Also, depending on the type

of data they carry, entire ADSL frames may be made useless only by single or few byte errors.

Note that an ATM cell or an ADSL frame is considered damaged if at least one byte in it is

errored after error correction at the receiver.

Error free seconds

The highly non-stationary nature of impulse noise has lead to the introduction of error free

seconds as a performance indicator in DSL systems. An errored second is a second in which

one or more errors occur [6]. Error free seconds are then defined as the time interval between

two consecutive errored seconds. The one-second window, however, introduces time smearing

which may mask certain peculiarities in the statistics of the error free intervals. Therefore, in

this work error free seconds have been calculated between errored intervals of duration less

than one second - typically several times the duration of a DMT symbol. Note that reducing

the time resolution to one second is trivial. The error-free intervals between errored ATM cells
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and ADSL frames have been analysed, since these are the errors of interest for services and

applications.

Subjective image quality

It has long been known that objective quality measures, such as error rates or SNR, are not

always a good indicator of the perceptive quality of encoded visual or audio data with low

level of information redundancy. A bit-level error can cause artifacts with a different degree of

visual or aural discomfort depending on the coding scheme and the data formatting. Therefore,

a subjective test on the image quality of an MPEG-2 video stream has been carried out as part

of this study.

4.2.3 Simulation parameters

There are several parameters which affect significantly the ADSL frame structure and its re-

silience to noise (see the description of the ADSL system architecture presented in Chapter 2):

� data rate required by the user, which is directly related to the size of the ADSL frames;

� strength of the Reed-Solomon FEC, i.e. the number of redundancy bytes;

� interleaving depth;

� number of ADSL mux frames per FEC codeword;

� DMT bit allocation scheme.

� impulse noise and crosstalk levels

The simulation results presented later in this chapter will evaluate the pre-defined performance

criteria for the data types discussed earlier when changing one or more of the above parameters.

4.3 ADSL simulation design

This ADSL study considers only downstream transmission (from network to subscriber), which

is more important from user perspective since ADSL has been designed to deliver higher bit
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Figure 4.2: Block diagram of ADSL downstream simulation in impulse noise and crosstalk
(generic ADSL modem after [1] except signalling, CRC and scramblers).

rates in downstream than in upstream direction. The downstream is also more susceptible to

noise as it has a larger bandwidth and is placed in a higher frequency range than the upstream.

4.3.1 Simulation architecture

The structure of the ADSL downstream simulation (Figure 4.2) follows closely a generic ADSL

modem (Figure 2.3, p. 15) as specified in [1, 11], with the following exceptions:

Signalling channels are not taken into account as this study is interested in the ADSL perfor-

mance in stationary state, i.e. after completion of handshaking and synchronisation procedures

between the transceivers at both ends of the line. Loss of synchronisation is considered unlikely.

Cyclic redundancy check (CRC) is not implemented since in the simulation both the transmit-

ted and received messages are known and the CRC mechanism for remote error detection is

unnecessary.

Scramblers are not implemented because their main function is to facilitate the receiver’s dig-

ital signal processing algorithms, which are not the subject of this study and are considered to

be optimal. The ADSL scramblers are self-synchronising and triple the bit errors [32]. How-
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ever, the error correction and interleaving in ADSL is done at byte level, and a small error

multiplication at bit level will not have a significant impact on the overall error performance of

ADSL.

The number of available data channels is four (AS0-AS3) in the simulation as opposed to seven

(AS0-AS3 and LS0-LS2) in the generic modem. The simultaneous usage of all seven channels

specified in [1, 11] is highly unlikely in actual ADSL deployments and four channels are suffi-

cient to exhaust numerous combinations of possible downstream bandwidth subdivisions.

Further comments

Data channels. Each of the four available data channels can be set independently at a specific

bit rate and assigned either to the fast or the interleaved path. The user data can be either ATM

or bit stream carrying arbitrary services.

Framing. The framing format complies fully with the specifications [1, 11] (see Section 2.5.2,

p. 15), with the remark that bytes carrying data from non-implemented functions, such as sig-

nalling or CRC, have been replaced with dummy bytes.

Coding techniques. The Reed-Solomon FEC, interleaving and trellis coding have been imple-

mented as specified in [1, 11] (See Section 2.5.3, p. 17, and Section 2.5.4, p. 19). The trellis

decoder is based on the Viterbi algorithm.

Transmission line model. The characterisation of the transmission line is based on an empirical
� � ,��

model, a short description of which is provided in Section 3.3.3, p 64. Further infor-

mation about
� � , �

modelling, as well as specific values of the resistance
�

, inductance
�

,

capacitance
,

, and conductance
�

per unit length of the transmission line can be found in e.g.

[6, 32].

Impulse noise and crosstalk models. The latest and most accurate impulse noise and crosstalk

models as described in Chapter 3 have been utilised in this simulation. The impact of im-

pulse noise and crosstalk on data transmission is reflected in the simulation at DMT level. The

symbols from the DMT subchannels are damaged with certain probability depending on the

signal-to-noise ratio (SNR). The noise power needed for the SNR is in turn evaluated using

the impulse noise and crosstalk models discussed in Chapter 3. Since crosstalk from digital

subscriber lines is mostly time-invariant, the spectral shaping of the telephone channel due to
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DSL crosstalk is taken into account in the bit loading algorithm.

Simulation data acquisition. The errors due to noise in the ADSL system are evaluated by

comparing the transmitted and the received data. The statistics collected during simulation are

related to ADSL mux data frame (reference point A on the receiver side, see Figure 4.2) and

ATM cell errors, since these are the errors of interest.

4.3.2 Software implementation

The simulation software is based on the Matlab R12.1 software environment, which was chosen

because of its high functionality and flexibility. The Matlab Signal Processing and Communi-

cations toolboxes are also required in order to run the simulation. Most simulation routines

have been written in the Matlab programming language. However, several functions which

are executed excessively slowly by the native Matlab interpreter have been implemented in C

and compiled as Matlab executable files. These involve mainly functions performing intensive

bit level computations, such as tone ordering or Reed-Solomon coding/decoding. The Matlab

interpreter has not been optimised for bit operations, and implementing those in C leads to a

significant reduction in the simulation time. However, the C routines require a considerable

amount of additional code to interface the Matlab interpreter. Note also that the C code should

be compiled into Matlab executables specifically for each hardware platform and operating sys-

tem. The simulation software has been tested successfully on Ultra-Sparc Sun Solaris 5.8 and

PC Redhat Linux 7.0.

4.3.3 Loading algorithm

The bit and energy allocation scheme in DMT modulation has a direct impact on the error rate

of the transmitted data. In this simulation, the bit loading aims for a minimum error rate at a

defined data rate (for background see Section 2.5.4, p. 21). A very efficient, albeit suboptimal

loading algorithm was proposed in [44] by Chow, Cioffi, and Bingham. The algorithm’s sub-

optimality only makes the bit allocation more realistic, since in actual ADSL deployments bit

loading is usually not optimal anyway due to imperfect channel knowledge and varying condi-

tions. The algorithm presented in [44] has been chosen as the basis on which a new, dedicated

ADSL loading algorithm has been developed.
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Basic loading algorithm

In this section, the bit loading algorithm proposed by Chow, Cioffi, and Bingham is described

in some detail, since it forms the basis of an ADSL loading algorithm to be discussed later. A

complete description is to be found in [6, 44].

The algorithm consists of three main stages. Firstly, in steps 1 to 7 it tries to find the optimal

system performance margin � � . If the algorithm does not converge after
� � @ , � � �NR

number

of iterations, then a suboptimal loop is executed in steps 8 and 9 to guarantee convergence.

Finally, the energy distribution is adjusted for each subchannel in steps 10 and 11 to assure

equal and optimal system performance margin over all used subchannels at the specified bit

error rate (BER). The distinct steps of this process are described below.

1. Compute the signal-to-noise ratio for each subchannel,
� � � � � ��I�� � , assuming that all

subchannels have a normalised energy level
4 � � � � � I�� � .

2. Let the current system performance margin � � � � � . & �
, the iteration count

��R � �*� R � �B� �
�
, and the number of used carriers � � � . , � � � � � � � � � ���"� ��! , i.e. the maximum number

of available subchannels.

3. For � � � to
�

, calculate the number of bits � � � � , the rounded number of bits �� � � � , the bit

difference
. � 8N8 � � � , and � � � . , � � � � � � � as follows:

� � � � � � ���
�
� � � 
 � � � � �� ��� � � ' � � � I

(4.1)

�� � � � �	��

����� � � � � ��
 I (4.2)

��� � � � � � � � � � � �� � � ��I (4.3)

If �� � � � � � I������ �����
����� � � � � ����� �����
����� � � � � � I (4.4)

where
�

in Equation 4.1 is the SNR gap (see Section 2.5.4, p. 21). For an uncoded,

zero-margin system with a BER of � � 	 � , � � � � �
dB.

4. Let the total number of used bits � ���"� ��! � � �� � H �� � � � . If � ���"� ��! � �
, stop and declare bad

channel.

5. Compute a new system performance margin � � using:

� � � � � � � � � ��� H � � � � � � � !�" � � �#! �%$ � �&(' �*),+-! � � � � � ' ��I (4.5)
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where ��� ���"��� � is the desired number of bits per DMT symbol.

6. Let ���
� ����� � 
�� ����� � ����� � 

�

� � .
7. If � ���"� ��! �� � � ������� � and ��� � � ��� � 

� ��� ��� ��
�� �	� , let

� � � �����
����� � � � � � �<
 � ' and go back

to step 3, else continue to step 8.

8. If � ���"� ��! � ��� ������� � , then subtract one bit at a time from �� � � � on the carrier that has the

smallest
. � 8N8 � � � , adjust

. � 8N8 � � � for that particular carrier, and repeat until � ���"� ��! �
� � ���"��� � .

9. If � ���"� ��! � ��� ������� � , then add one bit at a time to �� � � � on the carrier that has the largest. � 8N8 � � � , adjust
. � 8N8 � � � for that particular carrier, and repeat until � ���"� ��! � ��� ������� � .

10. Adjust the input energy so that the error probability for each subchannel
� 
 � � ��I,� � equals

the target error probability
� 
 C � ���"��� � , given the bit allocation �� � � � .

11. Scale the final energy for all used carriers with a common scaling factor so that the total

energy
4 ��� � ��! equals the target energy

4 � ������� � .

The number of iterations needed for the algorithm to converge in actual system implementations

was found to be [44] no more than 10.

ADSL bit loading requirements

The basic loading algorithm described in the previous section does not take into account two

important ADSL requirements [1, 11]:

� The number of coded bits per carrier can be between 2 and 15. Single-bit constellations

are not allowed in ADSL since they can be replaced by 2-bit constellations with the same

average energy. Therefore an additional restriction on the number of bits per tone has to

be included in the basic algorithm.

� If trellis coding is implemented (see Section 2.5.4, p. 20), there is a constellation expan-

sion of 1 bit per four dimensions plus four extra bits to force the encoder back to zero.

The number of required extra bits depends on the number of used carriers and therefore

cannot be predefined at the start of the algorithm, but has to be set adaptively during

algorithm execution.
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The straightforward implementation of both these requirements can lead to instability, as their

combination causes algorithm oscillation and even divergence from the targets in many realistic

scenarios. A novel modification of the algorithm has been developed to allow for convergence

while fulfilling both loading requirements simultaneously.

Modified loading algorithm

The basic loading algorithm has been modified in three main areas. Firstly, the target bit rate

� � ������� � is recalculated at each iteration to reflect the changing number of trellis redundancy

bits and the single-bit constellations. Secondly, the maximum number of bits is restricted to a

maximum of 15 bits. And finally, after the algorithm converges the subchannels with single-

bit constellations are declared as unused, i.e. loaded with 0 bits. These modifications can be

summarised as follows:

� The target number of bits ��� ������� � is calculated for each iteration of the basic algorithm at

steps 5, 8, and 9 according to the expression:

��� ���"��� � � ����
K� ��������� � � � ���"!#!#� 
 � ����� ��
 I (4.6)

where ����
K� �1������� is the number of bits in the DSL frame originally supplied to the tone

ordering for transmission. The additional terms � � ��� ! ! ��
 and �����	��
 are respectively the num-

ber of required trellis redundancy bits, and the number of bits in single-bit constellations,

and can be calculated from:

� � ���"!#!#� 
 �
	
�� � � � � . � H

� � � � � � � I�� � such that �� � � � � � I
if trellis coding is on

� I
if trellis coding is off

����� ��
 � �

� � I�� � such that �� � � � � � I

� Step no. 9 changes to: Restrict the maximum number of bits in a constellation to 15.

If � ��� � ��! � ��� ������� � , then add one bit at a time to �� � � � on the carrier with the largest. � 8N8 � � � that has less than 15 bits, adjust
. � 8N8 � � � for that particular carrier, and repeat

until � ���"� ��! � ��� ������� � .
� A new step 9a is introduced between steps 9 and 10 to set to zero bits the single-bit

constellations, i.e. let �� � � � � �
,
� � , such that �� � � � � � .
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Figure 4.3: Bit and transmit power allocation in ADSL with crosstalk from 49 ADSL disturbers
over a 4 km loop with 0.4 mm wires.

Since ��� ���"��� � has been biased by ����� ��
 , the removal of the bits from single-bit constellations will

leave the total number of bits exactly equal to �<��
���������� � � � � ���"!#!#��
 , using only constellations

of 2 bits or more, but up to a maximum of 15, which was the ultimate goal.

Algorithm application

While no study of the general conditions for algorithm convergence will be presented here,

extensive testing by simulation showed that the modified algorithm is stable and converges

for all cases of practical interest. Note also that because of the variations in �B� ������� � at each

iteration, the modified algorithm converges at a comparable, if slightly slower rate than the

basic algorithm.

Figure 4.3 shows an example of bit and transmit power allocation in ADSL with and without

trellis coding for 2 Mbps user data and 16 RS bytes over a 4 km line with 0.4 mm wires in the

presence of crosstalk from 49 ADSL disturbers in a 50-pair bundle.

ADSL crosstalk. The carriers in the lower frequency spectrum are not loaded because of the

high level of NEXT interference from the ADSL upstream at low frequencies (see Figure 3.20,

p. 66). At higher frequencies (above approximately 400 kHz in this particular example), FEXT

from the ADSL downstream dominates and exerts a larger influence on bit allocation than
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NEXT.

Trellis coding. The constellation expansion carried out by the trellis coding increases signifi-

cantly the required number of bits in the DMT symbol (in this example from 672 to 783 bits).

Due to the high level of NEXT at low frequencies, the algorithm tends to load the extra bits in

higher-frequency carriers, which has implications about the error probability in these subchan-

nels.

Transmit power. The transmit power allocation is saw-tooth shaped with a peak-to-peak span of

approximately 3 dB due to the integer bit constellation constraint. If trellis coding is activated,

the allocated power is generally higher than in the case of no trellis coding. In this way the

larger trellis-coded constellations achieve the same bit error rate as the non-trellis coded ones.

Note also that the transmit power can be scaled upwards as long as it complies with the total

energy or the power spectral mask requirements. Here this has not been done to allow for

comparison between the trellis and non-trellis case.

4.3.4 Error probability at the physical layer

In order to analyse the errors at higher protocol levels, it is essential to have an appropriate

estimate of the symbol errors at the physical layer of the ADSL system. Therefore, the symbol

error probability will be discussed in detail in this section.

Exact expression for symbol error probability

As mentioned earlier (see Section 2.5.4, p. 19), each DMT subchannel uses quadrature ampli-

tude modulation (QAM). The ADSL standard [1, 11] specifies that
�

-ary QAM constellations

with an even number of bits � are rectangular, i.e. their
� � � � points fall on a rectangular

grid. Such constellations are equivalent to two PAM signals on quadrature carriers, each having� � � � � ; � signal points. Therefore, the probability of a symbol error for the
�

-ary QAM

system is [125]:
� D � � � � � � � � D � � I

(4.7)
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where
� � D is the probability of error of a

� �
-ary PAM with half the average power of the

equivalent QAM system in each quadrature signal.
� � D can be calculated from [125]:

� � D � � � � � �� � � � � � 

� � �

4 ��5
�
� � I

(4.8)

where
4 ��5 is the average symbol energy, �

�
is the noise power, and

� ��@ �
is the

�
-function

defined in Equation 2.5, p. 21.

Upper bound of the symbol error probability

The result for symbol error probability in Equation 4.7 is exact only for an even number of bits

� per constellation. If � is odd, there is no equivalent
� �

-ary PAM system. It can be shown,

however, that the symbol error probability has a tight upper bound defined as [125]:

� D � � � � � 

� � �

4 ��5
�
� � �

(4.9)

While some authors argue that the upper bound is an acceptable approximation for any � � �
[125], others claim that constellations with � � �

must be treated separately if higher precision

is required [32].

Comments

Figure 4.4 shows a comparison between the symbol error probability estimates calculated using

the exact expression (4.7) and the upper bound (4.9) for two different sizes of the symbol

constellation:
� � ��� � � �

and
� � � ��� �
� �

. The signal-to-noise ratio per symbol is

defined as SNR � 4 ��5 ) � � .
It can be seen that for low SNR the upper bound approximation yields overly pessimistic esti-

mates of the symbol error probability, that numerically may even exceed the value 1. The low

precision at low SNR is a significant drawback of the upper bound approximation when evalu-

ating the impact of impulse noise, since the noise impulses are characterised with high energy

levels and the SNR of symbols affected by impulse noise is typically very low. Therefore the

exact expression (4.7) will be used in this study for both even and odd � , and the symbol error

probability calculated in this way has been represented graphically in Figure 4.5.
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Figure 4.4: Comparison between exact expression (4.7) and upper bound (4.9) of the proba-
bility of a symbol error for QAM.

It will be assumed in this study that if a QAM symbol is deemed corrupt after evaluation of

the error probability, all bits in this symbol are damaged. Such an approach is acceptable [32]

because the RS coding in ADSL is byte-organised, and symbol errors containing a few bit errors

are corrected with the same efficiency as single bit errors.

4.3.5 Default physical layer parameters

Unless specified otherwise, the following physical layer characteristics are assumed in the

ADSL simulations presented in subsequent sections:

Telephone line. A twisted pair with 0.4 mm wires and 4 km length is considered in this study.

The values of the relevant physical parameters, needed to calculate the line transfer function as

described in Section 3.3.3, p. 64, can be found in e.g. [6].

Impulse noise. The impulse noise model used in this simulation (see Section 3.2, p. 32) requires

numerous parameters characterising statistically the impulse amplitudes and spectral contents,

impulse duration, and impulse inter-arrival times. The main references for specific parameter

values are [3] and [5]. Note that the inter-arrival times will be modelled with a four-state

Markov renewal model, since it characterises the whole range of inter-arrival times and provides

a better accuracy than the two-state model. The latter has been defined to facilitate testing and

crude simulation of xDSL systems and only accounts for the shortest (
� � s) inter-arrival times.
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Figure 4.5: Probability of a symbol error for QAM as a function of the SNR per symbol and
the number of bits per constellation.

Crosstalk. The simulated line is assumed to be subjected to crosstalk from 49 ADSL disturbers,

i.e. is placed in a 50-pair binder where all lines carry ADSL. The relevant crosstalk power spec-

tral density can be calculated as described in Section 3.3, p. 59. Other crosstalk configurations

will be specified and considered later in Section 4.7.

4.4 ADSL frame and ATM cell error probability

This section presents the results of simulation of an ATM over ADSL system in the presence of

impulse noise and crosstalk for different bit rates and interleaving depths, and with
� � � � RS

redundancy bytes per codeword. The performance metrics used are ATM cell/header/payload

error rate and ADSL frame error rate. Note that an ADSL mux frame carries a different number

of ATM cells depending on the user data rate. For example, at 2 Mbps an ADSL mux frame

contains 64 bytes or approximately 1.2 ATM cells of 53 bytes each, at 4 Mbps - 128 bytes or

2.4 cells, and at 6 Mbps - 192 bytes or 3.6 cells on average.

4.4.1 Impact of interleaving

Figure 4.6 shows the mux frame and ATM cell error probability as a function of the interleaving

depth for different data rates. The frame and ATM cell error rates increase initially with the rise

of the interleaving depth. This behaviour is due to the fact that as a result of the interleaving
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Figure 4.6: Mux data frame and ATM cell error probability, for R=16 RS bytes.

errors are spread over more than one FEC codewords. If the error spreading is insufficient, the

number of errors in a codeword is still larger than the error correction capabilities of the code.

Therefore error correction is impossible to perform. However, the errors have been spread

over multiple codewords and as a result they affect more frames and cells. Above a “cut-off”

value of the interleaving depth, the error spreading is sufficient to allow for the FEC code to

correct the errors. As a consequence the frame and cell error rates fall abruptly. Similar results

for the impact of the interleaving depth, but on the TCP/IP over ATM over ADSL end-to-end

performance, have been reported in [126].

It is clear that interleaving makes sense only for depths large enough for the error correc-

tion code to cope. Intermediate values of the interleaving depth only worsen the mux frame

and ATM cell error rates. Therefore services requiring low latency, such as voice or video-

conferencing, should use no interleaving, whereas for services tolerant to some delay, e.g.

video on demand, it will be feasible to use large interleaving depths. This conclusion has

been summarised graphically in Figure 4.7.

4.4.2 DSL frame vs. ATM cell error rates

Performance in terms of ATM cells differs from that of DSL multiplexed data frames (after

deinterleaving if applicable and FEC). At the considered bit data rates (2 Mbps to 6 Mbps)
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DSL mux frames are larger and there is a higher probability that they will be damaged than

ATM cells. If the performance of a DSL system is evaluated solely on the basis of errored DSL

mux frames, the performance estimation will be inaccurate and pessimistic.

Note also that for interleaving depths below the cut-off value, higher bit rates exhibit better cell

error performance than lower bit rates. The opposite is true for ADSL mux frames, i.e. higher

bit rates have a worse frame error probability. The higher the bit rate, the more ATM cells there

are in an ADSL frame, and the more likely it is that whole cells from the ATM stream will

remain undamaged, especially if there is interleaving.

4.4.3 ATM cell header and payload error rates

Due to the smaller size of the ATM headers their error probability is lower than the ATM pay-

load error probability for equal framing parameters (Figure 4.8). Moreover, errors in headers

are much less affected by changes in the interleaving depth than the payload. At the critical

interleaving depth (with largest cell error rates) the discrepancy between header and payload

error rates is largest. If a header is errored the ATM cell is discarded. A significant proportion

of the cells, however, have valid headers but damaged payloads. Therefore, the ATM error

detection mechanism cannot be relied upon to identify unerrored cells. Most protocols both at

lower and at higher layers have their own mechanisms for error detection and/or correction in

order to avoid protocol and application confusions due to undiscovered errors. At lower layers,

ADSL itself has an error detection mechanism for the mux data frames. It applies, however,

to the entire ADSL frame and in this way “good” ATM cells may be discarded alongside dam-
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Figure 4.8: ATM header and payload error probability for R=16 RS bytes.

aged ones. Similarly, the ATM adaptation layers (AAL) also have error detection mechanisms.

However, again the contents of several ATM cells may be combined into one error detection

codeword, such as in the case of AAL5. Therefore, an appropriate higher level protocol stack

must be selected if such isolated unerrored cells are to be detected and used.

It should be pointed out that these results are for inter-cell interleaving. Some studies (see e.g.

[127]) suggest that intra-cell interleaving may outperform substantially inter-cell interleaving

in burst error environments. However, an intra-cell interleaving scheme is not allowed by the

ADSL standards.

4.4.4 Impact of the strength of the Reed-Solomon code

The results in Figures 4.6 and 4.8 for 2 Mbps with one and two mux frames per RS codeword

( � � � and � � �
) allow for comparison between different strengths of the error correction

code, i.e. 16 as opposed to 8 FEC bytes per mux frame respectively. Both at cell and at frame

level, the better error protection leads to lower ”cut-off” interleaving depth. There is therefore

a scope to reduce the latency for applications that use interleaving by increasing the strength of

the error protection.
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Figure 4.9: ADSL frame and ATM cell error rates for 2 Mbps interleaved channel with or
without trellis coding.

4.4.5 Impact of trellis coding

As can be seen in Figure 4.9, the error rates due to impulse noise of both ADSL frames and

ATM cells remain virtually unchanged regardless of whether trellis coding has been used. This

can be explained by the fact that the trellis encoding/decoding in ADSL is carried out across the

subcarriers within one DMT symbol1. The use of trellis codes is based on the assumption that

the noise is close to white, i.e. that the noise samples are uncorrelated from one subcarrier to the

next [42]. Impulse events, however, damage bits in a significant number of the subcarriers in the

DMT symbol, which is equivalent to a long burst of errors at the input of the trellis decoder. As

a result the decoder is unable to correct the errors and may even cause error multiplication. The

latter explains why the error rate is even slightly higher at high interleaving depths when trellis

coding is used. The error spreading caused by interleaving is enhanced by error multiplication

due to incorrect trellis decoding, which causes the overall error to exceed occasionally the

correction capabilities of the Reed-Solomon code.

Note that in order to ensure fairness in the comparison between the non-trellis and trellis-coded

case, in this particular simulation, only the four least significant, (potentially) trellis-coded bits

1The trellis coding in ADSL would be much more efficient against impulse noise if each subcarrier were coded
separately over multiple DMT symbols. However, such a system would have a prohibitively high complexity and
latency [40], and therefore the scheme proposed in [42] has been used for ADSL.
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Figure 4.10: ADSL frame and ATM cell error rates for 2 Mbps interleaved channel, transmitted
alone or alongside a 2 Mbps fast channel.

have been corrupted if the respective constellation has been deemed damaged with a certain

probability. Note also that all other simulation results in this chapter have been produced with-

out trellis coding.

4.4.6 Dual latency mode

The ADSL standards allow for dual latency operation, i.e. simultaneous use of the fast and

interleaved channels [1, 11]. Figure 4.10 shows a comparison between the ADSL frame and

ATM cell error rates for a single latency 2 Mbps interleaved channel, and a 2 Mbps interleaved

channel transmitted together with a 2 Mbps fast channel in an aggregate 4 Mbps dual latency

configuration. It is interesting to note that both the ADSL frame and the cell error rates are

slightly higher in the single than in the dual latency mode for equal channel data rate and

strength of error protection. The small difference in the error rates can be traced back to the

way the loading algorithm assigns energy to the subchannels. In comparison with the single

latency mode, the dual latency mode in this particular simulation has a higher overall bit rate

(4 Mbps), hence the number of bits that need to be loaded onto the DMT symbol is higher,

and therefore the constellation size in each subchannel increases. In order to ensure the same

symbol error rate at the required system performance margin (see Section 2.5.4, p. 21), the

loading algorithm raises the transmit energy assigned to each subchannel. The impulse noise
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Figure 4.11: Seconds of error free cells for user data rate 6 Mbps at various interleaving depths
(minimum 5 unerrored cells).

energy, however, remains with the same statistical characteristics and therefore the symbol error

rate, and hence the ADSL frame and ATM cell error rates, decrease slightly. The effect is more

visible if there is interleaving because the lower error rate at bit level allows for more frames to

be corrected by the Reed-Solomon code after deinterleaving.

4.5 Error free intervals

Similarly to the previous section, the results presented here are based on simulation of an ATM

over ADSL system in the presence of impulse noise and crosstalk for different bit rates and

interleaving depths, and with
� � � � RS redundancy bytes per codeword. The performance

metric used is statistics of inter-arrival times between errored cells and frames.

4.5.1 Seconds of error free cells

The probability densities of error free seconds for ATM cells for various interleaving depths

are shown in Figure 4.11. The distribution of error free seconds for interleaving depth 16 does

not differ significantly from that when there is no interleaving (interleaving depth 1). This is

due to the fact that at interleaving depth 16, the error spreading is insufficient to allow for error

correction, and the shortening of inter-error times in comparison with the non-interleaved case
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due to error multiplication is insignificant. Interleaving depth 64, however, is above the “cut-

off” interleave depth value, the error correction removes a large proportion of the errors and

the graph shifts towards higher probability for larger number of error free cells. That is, the

distribution of the seconds of error free cells depends on the RS codeword error correction rate,

rather than on the cell error rate.

It is interesting to note that the clustering which is characteristic for impulse noise inter-arrival

times, is also reflected in the distribution of inter-error intervals (compare Figure 4.11 to Fig-

ure 3.14 on p. 57). Note also that although the shape of that distribution may change because

of error correction, clustering remains as a characteristic.

4.5.2 Seconds vs. number of error free cells

The statistics of error free seconds do not change significantly with various user data rates

(Figure 4.12(a)) even though the mux frames carry a different number of ATM cells depending

on the bit rate. The explanation for this is that if an impulse damages a mux frame, the errors

would occur in the same temporal position in the stream of ATM cells regardless of the cell

rate, therefore the distribution of intervals between cell errors would also be invariant.

This is not so, however, if the distribution of the number of error free cells is considered. This

distribution depends on the data rate (Figure 4.12(b)), since for different bit rates one unit of

time contains a different number of cells (Figure 4.12(c)). At higher data rates the distribution

shifts towards larger number of consecutive error free cells.

The metric error free seconds is very much preferred in the DSL world. Higher protocol levels,

however, are mostly interested in the error performance in terms of data units such as ATM cells,

IP packets, or payload bits. It was shown above that the inter-error statistics due to impulse

noise are different for number of unerrored cells and seconds of unerrored cells. Therefore, the

error free data blocks may be a more representative metric of the system performance from the

point of view of higher protocol layers than the error free seconds.

4.5.3 Minimum acceptable number of unerrored cells

Because of interleaving and the resulting error spreading, and especially at large interleaving

depths, one impulse event may damage non-consecutive ATM cells, between which there is a
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Figure 4.12: Seconds of error free cells vs. number of error free cells (minimum 5 unerrored
cells).

certain number of unerrored cells (Figure 4.13(b)).

It is up to the application running over ATM to utilise such unerrored cells. It is very unlikely

that an IP packet can make use of them because it usually comprises the payload of several

ATM cells. Other applications, however, such as voice based on AAL2, can benefit from such

isolated unerrored cells. The statistics of seconds of error free cells change depending on the

minimum acceptable number of unerrored cells. If this number is small, most error free periods

concentrate around smaller values and the distribution at higher error free intervals is shifted

downwards (Figure 4.13(a)).

Note that the error free seconds in Figures 4.11 and 4.12 are derived for a minimum acceptable

number of five unerrored cells. This relatively large number has been chosen for the purpose

of comparison and clearer analysis. For the given DSL framing and ATM cell size, any smaller

minimum number of unerrored cells will lead to excessive change in the shape of the distribu-
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Figure 4.13: Seconds of error free cells with different minimum number of unerrored cells.

tions and will cover to some extent the impact of changes in other parameters.

4.6 Comparison between interleaving and multiple frames in RS

codeword

Impulse noise is the primary cause of burst errors in xDSL transmission systems. Interleav-

ing and coding several DMT symbols2 into a single Reed-Solomon FEC codeword are two

framing techniques in ADSL which can potentially mitigate the impact of burst errors. These

techniques, however, increase the latency in the transmission tract. Moreover, their practical

implementation requires additional hardware and software. Therefore the benefits of using

them must be carefully evaluated. A comparison between these burst error mitigation tech-

niques from the point of view of higher layers has been presented in this section. ADSL mux

frame error rates and ATM cell error rates have been used as performance metrics.

2Although strictly speaking a DMT symbol is different from its corresponding ADSL mux frame, these two
terms are widely used as interchangeable due to the straightforward mapping between the user data they refer to.
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Bit rate Symbols per FEC codeword
1 2 4 8 16

0.25 Mbps o.k. o.k. o.k. o.k. o.k.
0.5 Mbps o.k. o.k. o.k. o.k. n.a.
1 Mbps o.k. o.k. o.k. n.a. n.a.
2 Mbps o.k. o.k. n.a. n.a. n.a.
4 Mbps o.k. n.a. n.a. n.a. n.a.
6 Mbps o.k. n.a. n.a. n.a. n.a.

n.a. = not applicable

Table 4.1: Possible number of DMT symbols in a single RS codeword in ADSL depending on
the bit rate in the interleaved channel.

4.6.1 Framing restrictions

The Forward Error Correction (FEC) utilised in ADSL is Reed-Solomon in Galois field GF(
� �

)

and therefore the maximum codeword size is 255 bytes (see Section 2.5.3, p. 17). The restric-

tion on the codeword size limits the number of ADSL symbols that can be included in a single

codeword depending on the bit rate and the number of redundancy bytes in the interleaved

channel (Table 4.1). For large bit rates (4 and 6 Mbps) it is impossible to include multiple sym-

bols in a FEC codeword. Up to 16 DMT symbols per FEC word are allowed in the interleaved

channel of ADSL [1]. Also, up to 16 parity bytes are standardised for each channel (fast or

interleaved).

4.6.2 Interleaving vs. multiple symbols per FEC codeword

The results presented in Figure 4.14 allow for comparison between interleaving and multiple

symbols per FEC codeword. The two techniques have been compared for identical strengths of

the error correction code, i.e. identical ratios between payload and redundancy bytes regardless

of the number of symbols per codeword. That is, if the number of symbols per codeword

increases, the number of redundancy bytes per codeword also rises accordingly.

The following notations have been used. Itlv is the interleaving depth (in the interleaving case),

S is the number of DMT symbols per FEC frame (in the multiple symbols case), R is the number

of parity bytes in a codeword, and R 
 � ��� is the number of parity bytes per DMT symbol.
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Figure 4.14: Interleaving vs. multiple DMT symbols per codeword.

ATM cell error rates as a function of interleaving

As the interleaving depth rises, the ATM cell error rate also increases (Figure 4.14(a), graphs for

Itlv ��� � � ). If the interleaving depth exceeds a certain cut-off value, however, the cell error rate

drops. The mechanism of this phenomenon was discussed in detail in Section 4.4.1. The error

spreading over several symbols due to interleaving and the potentially non-uniform distribution

of the number of errored bytes per symbol have been summarised graphically in Figure 4.14(b).

ATM cell error rates as a function of the number of symbols per FEC codeword

The ATM cell error rate remains almost flat initially as the number of symbols in a codeword

increases (Figure 4.14(a), graphs for S ��� � � ). After a certain cut-off value in the number of

symbols per codeword, the cell error rate decreases. This effect can be explained in the fol-
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lowing way. At a low number of symbols in a FEC word, even one heavily corrupted symbol

is sufficient for the whole codeword to be damaged beyond the error correction capabilities of

the code. However, the errors remain clustered in the data stream as there is no error spreading

(Figure 4.14(c)). Therefore the byte errors affect roughly the same number of packets (ATM

cells), even as the size of the codeword increases. Above a certain cut-off value for the number

of symbols per codeword, the cell error probability falls. This is due to the fact that the code-

word becomes large enough and only a small proportion of the bytes within a codeword are

errored. Note that 97% of the noise impulses are of a length such that they do not affect more

than two DMT symbols [3]. The FEC code can then correct the errors caused by impulse noise

and the cell error rate drops.

The cell error probability as a function of the number of symbols per codeword increases

slightly in the initial ”flat” region of the graph (Figure 4.14, graphs for S � � � � with four

redundancy bytes per symbol - R 
 � � � � �
). The explanation for this effect is the following.

If the size of the codeword is small (e.g. it contains two symbols), there is a more frequent

switching between user data and redundancy bytes. Therefore it is more probable that the error

bursts will span both user and redundancy bytes. If an error burst is not correctable, it is more

likely that both the user data and the redundancy bytes will be affected. However, from the

point of view of the higher-level protocol (in this case ATM), only the user data error rate mat-

ters. Therefore we observe a lower cell error rate. For larger number of symbols in a codeword,

the redundancy bytes are concentrated at the end of the codeword. It is then less likely that an

error burst would span over both user data and redundancy bytes. In this case impulse noise

tends to affect longer sequences of user data bytes. As a result we observe a minor increase in

the cell error probability as the codeword size increases before the cut-off number of symbols

in a codeword.

Remarks

The results show that the performance of the interleaving technique is generally worse than

multiple DMT symbols per FEC word. The cell error rate as a function of interleaving exhibits

a peak before the cut-off interleaving depth, whereas the cell error rate as a function of the

number of symbols in a codeword remains almost flat below the cut-off value of number of

symbols. For interleaving depth and number of symbols per codeword above their cut-off

values the two cell error rates converge.
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Note, however, that multiple DMT symbols per FEC word offers significant benefits only at

a large number of symbols per FEC word and at satisfactory FEC protection. The latter two

are subject to restrictions as described in Section 4.6.1. In the particular case of 512 kbps data

rate, the maximum allowed number of DMT symbols per FEC word is four with four parity

bytes per symbol, or two when there are eight parity bytes. There is therefore a limit to the

improvement obtained. Similar restrictions also limit the improvement for other bit rates - 256

kbps and 1 Mbps.

Note also that the cell error probability is slightly higher for a higher number of correction

bytes (compare graphs for 8 and 4 parity bytes in Figure 4.14). This is due to the fact that

the correction bytes add up to the size of the DMT symbols. Larger DMT symbols are more

susceptible to noise and therefore the cell error rate is higher.

4.6.3 Burst error mitigation at different bit rates

The data rate influences considerably the restrictions imposed on the burst error mitigation

techniques by the ADSL framing requirements, and therefore affects the performance of those

techniques. Several ranges of data rates have been identified.

Low data rates (256 kbps)

Figure 4.15 presents the ADSL mux frame error rate and the ATM cell error rate as a function

of the interleave depth at 256 kbps. Two scenarios with a different number of symbols in an

FEC codeword have been considered. Broadly speaking, at such a data rate combining multiple

symbols in a codeword improves the ADSL frame/ATM cell error rates.

However, consider the case when there is no interleaving (interleaving depth 1). The ADSL

frame error rate is higher for larger number of symbols in a codeword (Figure 4.15(a)). This

anomaly can be explained in the following way. When several symbols are combined into one

FEC word, the payload bytes are ordered first, followed by the redundancy bytes at the end of

the codeword. One DMT timeslot therefore carries payload bytes from two consecutive ADSL

payload frames (except the last DMT timeslot of a codeword, which carries the redundancy

bytes and possibly part of one ADSL mux frame). If a DMT symbol is severely corrupted

and the errors cannot be corrected, these errors span over two consecutive ADSL frames. This

causes error proliferation and increases the frame error rate.
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Figure 4.15: ADSL mux frame and ATM cell error probability, 256 kbps, Rsymb = 4.

Let us now consider the ATM cell error probability when there is no interleaving. In contrast

to the frame error rate, the cell error rate declines when combining multiple symbols into one

codeword. This effect is due to the following. At such low bit rates an ATM cell comprises

several ADSL frames. For example, at 256 kbps an ADSL frame consists of 8 bytes, as opposed

to 53 bytes for an ATM cell. That is why the error spread over the frames does not have a big

impact on the cell error rate. However, some codewords are actually corrected due to the larger

codeword size. Therefore the overall ATM cell error probability is lower.

Medium data rates (512 kbps and 1 Mbps)

The ATM cell error rate as a function of the interleave depth for 512 kbps and 1 Mbps is pre-

sented in Figure 4.16. Several scenarios with different numbers of symbols in a FEC codeword

have been considered. The results show that combining multiple symbols in a codeword has

adverse effects on the ATM cell error rates.

In Section 4.6.2, a mechanism was described by which the ATM cell error rate increases when

the number of symbols in a codeword rises for equal interleave depth and number of FEC bytes

per symbol (Figure 4.14). This effect is also visible in Figure 4.16. The cell error rate worsens

more significantly at 1Mbps than at 512 kbps. This is due to the fact that at 1 Mbps the size of

the ADSL frames is 32 bytes - comparable with the size of the ATM cells of 53 bytes. Therefore

any increase in the ADSL frame error rate impacts to a large extent the ATM cell error rate.
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Figure 4.16: ATM cell error probability, 512 kbps and 1 Mbps, Rsymb = 4.

Only when the number of symbols per codeword is above its cut-off value (dash-dotted line in

Figure 4.16(a)) the cell error rate declines. Note, however, that this threshold is reached with

32 parity bytes per codeword. All devices may not support such a large number of parity bytes,

the standard has a minimum requirement up to only 16 parity bytes [1].

High data rates (
�

2 Mbps)

At 2 Mbps only a maximum of two symbols can be combined into a FEC word because of the

codeword length restrictions. At such bit rate and maximum FEC capabilities (sixteen parity

bytes), combining symbols in a FEC word worsens performance. At higher bit rates (e.g. 4

Mbps and 6 Mbps) it is impossible to fit more than one symbol in a single FEC codeword.

4.6.4 Interaction between interleaving and multiple symbols per FEC word

The combined action of interleaving and multiple symbols per FEC word has an adverse ef-

fect on the cell error probability in comparison to the cases when only one of the techniques

has been used. In general the relationship between error probability and interleaving depth

follows a typical pattern. The cell error probability initially rises when interleaving depths in-

crease but exhibits a sharp drop after reaching a cut-off interleaving depth. However, at low and

medium bit rates (256 kbps and 512 kbps) a slight drop of the cell error probability is observed

at an interleaving depth of 2 when multiple symbols per codeword are also used (Figures 4.15
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and 4.16(a)). A combination of small error spreading from interleaving and larger codewords

turns out to be beneficial and leads to a reduction in the cell error rate. However, at higher in-

terleaving depths (larger than 2 but lower than the cut-off value) the error proliferation because

of interleaving dominates and worsens the performance. At large interleaving depths (32 or 64)

the packet error rates for different numbers of symbols per codeword converge.

4.7 Impact of crosstalk in an unbundled environment on ADSL

performance

Many countries are in the process of unbundling their access networks, i.e. granting differ-

ent operators access to the incumbent’s loop plant. This unbundling represents a risk for

DSL deployment in that spectral control and management of the services deployed becomes

more problematical. Crosstalk from services in neighbouring pairs is an important source of

noise/interference on the line. Consequently, its impact must be taken into account in an un-

bundled environment.

This section presents results from a study of data transmission over ADSL impaired by impulse

noise and crosstalk mixture from kindred (ADSL) interferers, and interferers alien to ADSL,

such as HDSL and ISDN. Changing kindred crosstalk conditions have also been considered.

The performance metrics used are ADSL mux frames and ATM cell/header error rates.

4.7.1 Crosstalk scenarios

It is assumed that the line under consideration is placed in a bundle of 50 pairs, where all 49

additional pairs carry a DSL service (i.e. the worst case). Five crosstalk scenarios have been

considered:

� Kindred-only: 49 ADSL pairs;

� Mixture: 24 ADSL + 25 HDSL pairs;

� Mixture: 24 ADSL + 25 ISDN pairs;

� Mixture: 19 ADSL + 15 HDSL + 15 ISDN;
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Figure 4.17: Bit loading for 2 Mbps in different crosstalk conditions.

� Changing kindred: 24 ADSL pairs during initialisation (bit loading), which consequently

have increased to 49 ADSL pairs.

Note that the HDSL version considered here uses a 2B1Q-modulated signal at 392 kbaud (784

kbps) per pair, full duplex [20, 22, 23]. Similarly ISDN transmits a 2B1Q-modulated signal at

80 kbaud (160 kbps) [15–17]. A discussion of the crosstalk generated by various xDSL systems

was presented in Section 3.3.4, p. 65.

The crosstalk interference from mixed sources has been summed using the FSAN method (see

Section 3.3.5, p. 66), because it gives good estimates [117, 120] and has been accepted as a

standard [121].

4.7.2 Bit loading in mixed crosstalk environment

The bit allocation scheme largely depends on the crosstalk spectrum (Figure 4.17). Alien

crosstalk (HDSL and ISDN) overlaps larger frequency ranges in the ADSL downlink spec-

trum and deteriorates the SNR of more DMT subchannels than the kindred (ADSL) crosstalk.

To compensate for the smaller number of usable subchannels in the presence of alien crosstalk,

the bit allocation algorithm tends to load larger number of bits in subchannels with good SNR

and in higher frequency ranges in comparison with the case of kindred-only crosstalk.
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Figure 4.18: Frame error probability in different crosstalk scenarios.

4.7.3 Results

Impact of alien crosstalk

At 2 Mbps alien crosstalk from HDSL and ISDN worsens the frame error rate (Figure 4.18(b)).

The influence may not seem very significant, but is large enough to raise questions. In an un-

bundled market there can be little control over the services provided by competitors on the same

bundle. Moreover, new DSL versions are constantly emerging and this may lead to further com-

plications. The impact of HDSL or ISDN alone on ADSL does not seem to be very large. This

is due to the use of DMT and noise-based loading algorithms in ADSL. However, combination

of both HDSL and ISDN and with the added kindred ADSL have a noticeable effect on ADSL

errors at higher levels. This is a result of the fact that the crosstalk mixture leaves few ”clean”

DMT subchannels, i.e. most channels suffer from deteriorated SNR.

For lower bit error rates (2 Mbps) the influence of crosstalk on the ADSL mux frame error rate is

more significant (Figure 4.18). This can be explained with the fact that for identical interfering

spectra the number of bits in a subchannel is larger when higher bit rates are transmitted. Then

DMT symbols are more susceptible to noise. For impulse noise with the same energy more

DMT symbols will be damaged in comparison with lower bit rates. Thus the effects of the

additional crosstalk noise are underminded.

Similar to the trends in frame error rates, HDSL and ISDN crosstalk raise the cell error rate
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Figure 4.19: ATM cell/header error probability in different crosstalk scenarios.

caused by impulse noise (Figure 4.19(a)). Due to the spectral incompatibility alien crosstalk

tends to be more aggressive compared to kindred crosstalk. ATM cell header error rates (Fig-

ure 4.19(b)) are proportionally more affected by crosstalk than cell error rates. Headers are

much smaller in size than ATM cells, which is a sign that the additional noise power from

crosstalk leads to larger spread of errors on byte level (note that the interleaving implemented

in the model is intercell [11]). This in turn means that some services, e.g. voice based on AAL2,

would be more affected since it is based on small portions of information and does not count

on retransmission. On the contrary, IP over ATM is unlikely to show a significant difference

in performance because of the larger average size of an IP packet in comparison with an ATM

cell.

Increased kindred crosstalk

In this scenario the ADSL modem has been initialised based on a fewer number of interferers,

(24 ADSL pairs), but consequently the number of interfering services has been increased to

49 ADSL pairs. The results are shown in Figure 4.20. As can be expected, for both high and

low bit rates the increase in crosstalk levels after initialisation leads to worse cell error rates.

It is therefore recommended that ADSL modems re-adjust their bit loading scheme according

to changing crosstalk conditions. Increase in the crosstalk level can be compensated for by

increasing the transmit power. If the crosstalk interference drops, the transmit power can be
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Figure 4.20: ATM cell error probability in changing crosstalk scenario.

lowered for more efficient spectral management in the local loop. Changes in the crosstalk

level can also be counterbalanced by bit re-allocation. There is, however, an issue with the

overall link stability across all users of the bundle. If all DSL links in the cable start re-adjusting

their bit loading schemes simultaneously, there is a danger of oscillations in the bit allocations

or overall increase in the transmit power and hence the crosstalk levels, neither of which will

achieve the final aim - to reduce the error rate. For further discussion of the problem of multiuser

power control in DSL see e.g. [128].

4.8 MPEG-2 bit stream over ADSL subjected to impulse noise

MPEG-2 video stream has been used as an example of an end user application. The video

transmission has been simulated as a direct bit stream over ADSL, without an intermediate

protocol such as ATM or IP. Two bit rates have been considered - 1.5 Mbps and 4 Mbps. The

impact of impulse noise and crosstalk on the subjective quality of MPEG-2 over ADSL system

with different interleaving depths has been evaluated subjectively.

4.8.1 Simulation description

For the purpose of comparison the noise impulses have been scheduled to arrive at regular

intervals of 2.7 s. However, the characteristics of individual impulses, such as amplitude and
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duration, have still been drawn from the appropriate distributions.

The MPEG-2 videos used are test bitstreams available from Tektronix [129]. The sequences

have been selected to include a still image, a human face, a slowly moving indoor image, and a

moving landscape.

FEC has been set at the highest standardised strength, e.g. 16 bytes per codeword. Only one

DMT symbol has been encoded in a codeword for the 1.5 Mbps video bitstreams.

4.8.2 Results

Comments about the video quality3 will be presented separately for 4 Mbps and 1.5 Mbps video

bitstreams.

4 Mbps MPEG-2 video bitstream

The following effects of impulse noise on video quality have been found noteworthy:

� 1 - no interleaving. The FEC cannot cope with the burst errors caused by impulse noise

and as a result there are noticeable artifacts in the images at the arrival of noise impulses.

� 2, 4, 8, 16 - the size and duration of error artifacts rises gradually with the increase of the

interleaving depth.

� 32 - this interleaving depth allows for certain errors to be corrected and introduces a much

lower latency than interleaving depth 64 (8 ms interleaving delay at depth 32 compared

to 16 ms interleaving delay at depth 64). However, there is still a notable number of out-

standing uncorrected errors that prove crucial for the image quality. The error spreading

due to interleaving causes long and unpleasant artifacts and can even force the MPEG-2

decoder out of synchronism.

� 64 - at this interleaving depth the error spreading is sufficient and virtually all errors are

corrected by FEC. The received image is almost identical to the original before transmis-

sion.

3On encountering an error in the video bitstream, some video decoders jump to the next “good” video frame,
rather than show images distorted by errors. In order to appreciate fully the impact of errors on the video quality,
and the difference between this quality for different interleaving depths, you need to use a decoder which shows all
video frames, including the errored ones. One such decoder has been suggested in Appendix D.
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The results show that if enabled, interleaving should be set to the maximum possible depth

(64) for 4 Mbps video transmission. Intermediate interleaving depths worsen the video image

quality, even though the frame and cell error probabilities may exhibit improvement on the

non-interleaved case.

1.5 Mbps MPEG-2 video bitstream

The perceived subjective quality of the 1.5 Mbps MPEG-2 video bitstream depends in a similar

fashion on the interleaving depth as the 4 Mbps MPEG-2 video. Note, however, that the cut-off

interleaving depth, at which the number of artifacts reduces significantly, is 16 (as opposed to

depth 32 for 4 Mbps). This effect is a result of a lower symbol error probability and higher

probability for RS error correction if the bit rate is lower. Identical results have been observed

for ADSL frames and ATM cells as discussed in Section 4.4, p. 87 (see also Figure 4.6).

The simulation results show that in this particular example of 1.5 Mbps video transmission, it

is acceptable to reduce the interleaving depth to 16 without compromising the image quality.

Such a configuration would be useful for delay-sensitive applications, which cannot tolerate the

time lag caused by interleaving with maximum depth.

Note that small differences in the frame and cell error rate correspond to large deviations in the

perceptive quality of video images. Therefore the error rates for frames and cells presented in

earlier sections were plotted on linear scale. In this way the graphs visualise better the potential

effect of errors on user applications.

Both the 1.5 Mbps and 4 Mbps video bitstreams at all interleaving depths allowed by the ADSL

standards [1, 11] are provided on CD, as described in Appendix D.

4.9 Conclusion

In this chapter the results of simulation of an ADSL system have been presented. The focus has

been on evaluating the impact of impulse noise and crosstalk on higher protocol layers, such

as ATM cells, ADSL frames, and MPEG-2 bit stream, for different ADSL framing parameters.

The ATM cell and ADSL frame error rates and inter-error intervals, as well as subjective video

quality have been used as performance metrics.
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The ADSL simulation architecture mirrors closely a generic ADSL modem, and the latest and

most accurate impulse noise and crosstalk models have been used. A novel extension of a

loading algorithm has been developed to allow for stable bit allocation for DMT with restricted

subtone constellation size and trellis coding.

The DSL framing has been found to have an adverse impact on services transmitted over ADSL.

The interleaving depth should be set to its maximum value if the applications running over

ADSL can tolerate latency, otherwise no interleaving should be used. Intermediate interleaving

depths only deteriorate the performance at higher levels, such as ATM cells, ADSL frames, and

MPEG-2 video.

If combining multiple symbols in one FEC codeword is considered as an alternative to inter-

leaving, three data rate ranges can be distinguished. For low bit rates (256 kbps) it is justified

to use multiple symbols per FEC word as an alternative to interleaving. At medium bit rates

(512 kbps and 1 Mbps) usage of multiple symbols per FEC word may bring improvement in

performance, but not with the parameter settings allowed in the current standards. At high bit

rates (2 Mbps and above), there is no alternative to interleaving because of restrictions on the

number of symbols that can be combined in a FEC word at such bit rates.

The strength of the FEC code influences considerably the error rate performance and should be

set to the maximum allowed number of redundancy bytes. Trellis coding, on the other hand, has

no significant impact on the errors due to impulse noise and cannot contribute to the impulse

noise mitigation.

The distribution of error free intervals (seconds or data units) between error events exhibits

a high degree of clustering, similar to the one shown by inter-arrival times of impulse noise.

Error free cells, packets, or even data bytes take into account the bit rate at which the DSL

system operates, and are therefore a more appropriate inter-error measure for higher protocol

layers than the error free seconds. The effective distribution of error free intervals as seen

from higher layers varies according to the degree an application can utilise unerrored cells that

occur between error bursts. Detecting the unerrored cells, however, is impeded by the fact that

error protected ATM cell headers are less affected by impulse noise than the unprotected cell

payload.

Alien crosstalk from HDSL and ISDN services or increased kindred crosstalk in the same bun-

dle leads to higher ADSL frame/ATM cell error rates caused primarily by impulse noise. The
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crosstalk mixture from multiple alien DSL services leads to higher deterioration than when only

one alien interferer is present. Although not very significant on cell level, this deterioration is

pronounced at bit level and can affect certain services. Therefore spectral compatibility is an

important issue in an unbundled environment.
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Chapter 5
Theoretical analysis of errors in DSL
systems in impulse noise environment

5.1 Introduction

The statistical model of impulse noise presented in Chapter 3 is used in this chapter to evaluate

analytically the impact of impulse noise on xDSL systems. The impulse amplitude statistics

serve as the basis for a new Bernoulli-Weibull model of impulse noise in the local loop. It

is shown that earlier models that assume Gaussian distributed impulse amplitudes or Rayleigh

distributed powers are not applicable to impulse noise in telephone lines. Using the Bernoulli-

Weibull model, it is demonstrated that multicarrier QAM performs better than single carrier

systems but only for low impulse power and low impulse probability.

The data errors in ADSL are then analysed using the Bernoulli-Weibull model and temporal

impulse statistics, and the theoretical approach is shown to offer good approximation to the

simulation results.

In the final part of the chapter, the Bernoulli-Weibull model is also used for the study of SHDSL

systems. The analysis of the data errors in SHDSL shows that ADSL offers a significantly

better impulse noise mitigation than SHDSL but only after using fully the interleaving and

error correction techniques.

5.2 Impact of impulse noise on single and multi-carrier QAM in

xDSL systems

Earlier works have analysed the effect of impulse noise on QAM modulation [12, 13, 130] but

with impulse noise models that do not apply to the impulse noise in telephone lines. In [131],

the performance of a binary signal in telephone lines has been studied using the impulse noise

model from [82]. This model has been modified in later works [3, 4] and the results in this

analysis are based on the latter, modified version, which was presented in Section 3.2, p. 32.
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5.2.1 Bernoulli-Weibull impulse noise model

In order to evaluate theoretically the impact of impulse noise on DSL systems, a new local

loop - oriented noise model at symbol level will be introduced. It was discussed in Section 3.2

that the original proposal [82] was to model the statistics of the impulse amplitudes � with a

generalised exponential distribution
8 ��� � � � (Equation 3.1, p. 37). However, the Weibull dis-

tribution
8 >O� � � � (Equations 3.2 and 3.3) can be used as an alternative [3]. Since the latter

distribution is analytically more tractable, it will also be used in the current analysis. Note also

that background noise in the local loop can be approximated with a Gaussian distribution [82].

The received signal � ��� � in the symbol domain can be expressed as:

� ��� � � � ��� � � � ��� ��I
(5.1)

where � ��� � is the transmitted complex symbol drawn from the QAM constellation under con-

sideration. Let us assume that the combined complex noise
� ��� �

at the receiver is a sum of an

impulse Bernoulli-Weibull component and a background Gaussian component, i.e.:

� ��� � � � �%$ ��� � 
 	 ��� � � � �%$ ��� � 
 � ��� ��I (5.2)

where 	 is a complex Weibull process with parameters � and � , � is a complex additive white

Gaussian noise (AWGN) with mean zero and variance
�
�
�� , and � �%$

is a real Bernoulli process,

i.e. an independent and identically distributed (i.i.d.) sequence of zeros and ones with prob-

ability
� 0 � � �%$ � � � � � . It is assumed that the process 	 refers to the combined effect of

impulse noise and AWGN, because the distribution is derived from empirical data of this very

combination.

5.2.2 Two-dimensional noise amplitude statistics

The noise amplitude statistical models need to be considered in two dimensions to facilitate

the evaluation of the impact of noise on orthogonal signals. Therefore, a new extension of the

Weibull amplitudes model to a bivariate form will be presented and used for error performance

analysis. A more detailed consideration of the Weibull distribution can be found in Appendix B.
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Bivariate Weibull noise statistics

If the impulse noise amplitude � is Weibull distributed, then the complex impulse noise with

real and imaginary components � � and � A
will have a bivariate Weibull complementary cumu-

lative distribution function (ccdf) of the form:

�T >?� C A � � � I � A � � � 	 � � � � 
� � � 
� � ��� 
 I � � I � A � � I � � � I � � � � I
(5.3)

where the parameter � has been scaled to � � � � 
 ; � � to reflect the fact that both components

of the complex impulse noise contribute to the noise power. The bivariate Weibull pdf, after

expansion to four quadrants to allow for negative values of � � and � A
, is defined as:

8 >O� C A � � � I � A � � �� 
 � � 	 � � 	 	 � A 	 � 	 � � � � 
� � � 
� � ��� 
 "
" �

� � � � � � � � � �A � 
 	 � � � � � �� � � � � � � � � � �A � � 
 	 � � � (5.4)

This bivariate Weibull distribution has been used earlier in reliability studies, e.g. by Hougaard

[132].

Bivariate Gaussian noise statistics

The complex background noise statistics can be described with a zero-mean bivariate Gaussian

distribution
8 � with independent variables � � and � A

[13, 130]:

8 � � � � I � A � � �
� � � �� �

	�� � 
� � � 
� � ; � ��� 
$ � I (5.5)

where
�
� � is the background noise power. The bivariate normal distribution is well studied and

further information about its properties can be found in e.g. [101].

5.2.3 Performance of single-carrier QAM in impulse noise

Using the noise model presented in Section 5.2.1, it can be shown that the combined noise

probability density would be:

8B6KC 
 E ��� � I�� A � � � 
 8 >O� C A ��� � I�� A � � � � � � � 8 � ��� � I�� A ��I
(5.6)
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where � is the impulse probability,
� �

and
� A

are the real and imaginary noise components,

and
8 >O� C A ��� � I�� A �

and
8 � ��� � I�� A �

are the bivariate Weibull and bivariate Gaussian probability

densities specified in the previous section.

Error probability for QAM signals

For a rectangular M-QAM constellation with M � � � I � � � I � I � I � � �
points at distance

.
apart,

the exact expression for symbol error probability is [13]:

� 
 C �NM?D � � � �
� � 	 � � - H � � � � 


	 H � � � � - � � � � � 

	 H � � �"- � � � � � 


	 H � � �"- ��� I
(5.7)

where
- H

is the probability of correct decision for the corner symbol points,
- � for the inner

square, and
- � and

- �
for the horizontal and vertical edges less the corners:

- H � Pr � � � � �
.
�

� � A � �
.
� � I

- � � Pr � 	 � � 	 � .
�

� 	 � A 	 � .
� � I

- � � Pr � 	 � � 	 � .
�

� � A � �
.
� � I

- � � Pr � � � � �
.
�

� 	 � A 	 � .
� � �

(5.8)

Note that the distance between constellation points
.

for
� �

-QAM is defined as [125]:

. � � �
� � � �

4 
 � � �
� � � �

� 
 � �� I (5.9)

where
4 
 , � �� , and

� 
 are respectively the symbol energy, power, and duration.

The probability of symbol error can be converted into an equivalent probability of a binary

digit error. For
�

-ary orthogonal signals with symbol error probability
� 
 C D , the bit error

probability
� � is given by [125]:

� � �
� � 	 H
� � � �

� 
 C D I � � � � �
(5.10)
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QAM error probability in Bernoulli-Weibull impulse noise environment

By integrating the combined noise probability density
876 ��� � I�� A �

from Equation 5.6, in the

appropriate limits as specified in Equations 5.8, it is obtained:

- H � � � � � � 	 � � � ) 
 � � � H� � 	 � � � ��� 
 � ) 
 � � � � � � � � � � � � � � .
�
� � � �

� I
- � � � � � � � � 	 � � � ) 
 � � �

� 	 � � � ��� 
 � ) 
 � � � � � � � � � � � � � � � .
�
� � � �

� I
- � C � � � � � � �

� � 	 � � � ) 
 � � � H
� � 	 � � � ��� 
 � ) 
 � � � � � � � � � � � � � � .

�
� � � �

�
� � � � � .

�
� � � � I

(5.11)

where
� ��@ �

denotes the
�

-function (see Equation 2.5, p. 21). The symbol error probability
� 


and the bit error probability
� � can then be found using Equations 5.7 and 5.10 respectively.

Additional remarks

It can be shown that in the case of Weibull distributed impulse noise amplitudes, the impulse

noise power
�
�
�� can be obtained from (see Appendix B):

�
�� � � � 	 � ; 
 � � � � �

� � I
(5.12)

where � and � � are the Weibull parameters, and
� ����� ��� �� R�� 	 H

� 	 � . R is the gamma function.

In all subsequent results the signal-to-background noise (SBR) ratio is defined as
� 
!��� 
$ , and the

signal-to-impulse noise ratio (SIR) - as
� 
!��� 
� .

5.2.4 Bernoulli-Weibull vs. Bernoulli-Gaussian noise model

It is interesting to compare the Bernoulli-Weibull model with the results obtained in [12–14]

using Gaussian or Rayleigh impulse noise models. Figure 5.1 shows plots of the bit error rate

(BER) performance in Bernoulli-Weibull and Bernoulli-Gaussian impulse noise. If the impulse

amplitudes are Weibull distributed the performance of single carrier QAM remains poor for

significantly higher signal-to-impulse noise ratios (SIR) than in the case of Gaussian impulse

amplitudes. This is due to the fact that the Weibull distribution is more heavy-tailed than the

Gaussian distribution, a demonstration of which can be seen in Figure 5.2. Therefore those
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Figure 5.1: Comparison between the performance of SC-64QAM for Bernoulli-Weibull and
Bernoulli-Gaussian impulse noise model with SBR = 30 dB.

models that assume Gaussian impulse amplitudes, which are also equivalent to Rayleigh power

distributions [13], offer too optimistic results for the analysis of digital subscriber line systems.

5.2.5 Performance of multi-carrier QAM in impulse noise

This analysis will consider the most common multi-carrier QAM version, namely discrete

multi-tone (DMT) modulation, which is employed in ADSL and is also likely to be standardised

for VDSL.

DMT modulation

The DMT modulation is carried out by applying inverse discrete Fourier transform (IDFT) to

the transmitted symbol. Assuming perfect synchronisation, timing, and an ideal channel, the

received symbol � ��� � for
�

-carrier DMT modulation is given by [40]:

� ��� � � �� � � 	 H
�

� � �
� � � � � 
 ��� �	� ; � � � ��� ��I � � � I � I � � � I � � � I (5.13)
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Figure 5.2: Comparison between univariate double Weibull and zero-mean Gaussian distribu-
tions with identical variance �

� � ��� 
 ���
.

where again � ��� � is the transmitted QAM data symbol, and
� ��� �

is the combined complex

noise defined in (5.2). Performing a discrete Fourier transform (DFT) on the received sequence
� ��� � yields the recovered transmitted symbols � ��� � and a noise component

� � ��� � :

� ��� � � � � ��� � � �� � � 	 H
�

� � �
� � � � � 	 
 ��� �	� ; � I � � � I � I � � � � � � � I (5.14)

where
� � ��� � is the DFT of the line noise:

� � ��� � � �� � � 	 H
�

� � �
� � � � � 	 
 ��� �	� ; � I � � � I � I � � � � � � � � (5.15)

Noise pdf for DMT signals

Using Equation 5.15, it is possible to derive an expression for the characteristic function (cf) of

the complex noise component
� � ��� � , namely:

� 6 � ��� HJI�� � � �
�
�

� � �
� � � � � � � � � � � � 	 � � �>?� ��� H1I�� � ��� � 	 �� ��� H1I�� � ��I (5.16)

where
� >?� ��� H�I�� � � and

� � ��� HJI�� � � are the characteristic functions of the bivariate Weibull and

bivariate Gaussian distributions respectively.

In the general case the cf
� ��� H�I�� � � of a bivariate distribution with pdf

8 ��@ H�I�@ � � is defined as
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(see e.g. [98]):

� ��� H1I�� � � � 
 �	 � 
 �	 �
� 
�� � 9 � � 
�� 
 9 
 8 ��@%H1I�@ � � . @%H . @ � � (5.17)

Hence the cf
� � ��� H I�� � � of the bivariate Gaussian distribution with pdf (5.5) is:

� � ��� HJI�� � � � � 	 � 
$ � � 
� ��� 

 � ; � � (5.18)

Explicit expressions for the Weibull cf are not available in the general case and particularly

if the shape parameter � is smaller than 1 (see Appendix B, [98, 133]). However, all studied

impulse amplitude statistics in the local loop are approximated by Weibull distributions with

� � � (see Table 3.1, p. 38 and [3]). That is why a numerical approach has been developed to

calculate the noise pdf for multi-carrier QAM.

It is known that multiplication of cfs corresponds to a convolution of pdfs (see e.g. [101]). The

pdf of the combined noise in the case of
�

-carrier DMT modulation can therefore be expressed

as:

8B6GA�C DFE ��� � I�� A � �
�
�

� � �
� � � � � � � � � � � � 	 � 
 8 ��� � �>?� C A ��� � I�� A ��� �

� � � �� C � �
	�� 6 
� � 6


� � ; � � 
$�� � � I
(5.19)

where �
�� C � � � � 	 � � � 
$� , and

8 ��� � �>O� C A ��� � I�� A �
denotes � -fold convolution of the function

8 >O� C A ��� � I�� A �
.

The two-dimensional convolution of two functions
8 H ��@ I � �

and
8 � ��@ I � �

is given in the general

case by (see e.g. [134]):

8 H ��@PI � �	� 8 � ��@ I � � � 
 �	 � 
 �	 �
8 H �
�
I 	 � 8 � ��@ � � I � � 	 � .

�
. 	 �

(5.20)

Similarly to the Weibull characteristic function, no closed-form solution to the convolution

of the Weibull probability densities can be found. It is possible, however, to evaluate this

convolution numerically.

Alternative bivariate Weibull distribution

The numerical convolution of two-dimensional functions poses significant computational and

memory requirements when high precision is required. Therefore, a bivariate Weibull distribu-
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tion of an alternative form has been considered, which gives sufficiently accurate results for a

significantly lower usage of computing resources.

Let us assume that the two orthogonal components of the complex impulse noise are inde-

pendent and Weibull distributed with parameters � and � . The joint distribution of the two

components is also Weibull of a form which will be referred to in this work as type II, and

which has the following ccdf:

�T >O� C A�A � � � I � A � � � 	 � � � � � � � � � � � I � � I � A � � I
(5.21)

The pdf of this distribution will simply be the product of the marginal pdfs, and after an expan-

sion to four quadrants to allow for negative values of � � and � A
has the form:

8 >O� C A�A � � � I � A � � �� � � � � � 	 � � 	 
 	 H
	 � A 	 
 	 H

� 	 � � � � � �
� � � � � � � � � �

(5.22)

Going back to the original bivariate Weibull distribution with ccdf (5.3), which will be referred

to as type I, there is a certain degree of dependence between its variables. The correlation

between the random variables � ���
� � and � ���

� A
is given by [135]: � � � 


� � � . It has been

found, however, that the error rates calculated using the original Weibull distribution do not

differ significantly from the error rates based on the alternative Weibull model introduced in

the current section, the latter producing slightly more pessimistic estimates than the former

(Figure 5.3). The type II distribution offers considerable computational advantages over type

I, since the numerical convolution needs to be carried out only in one dimension. Therefore,

the alternative bivariate Weibull distribution will be used for evaluating the performance of the

multi-carrier QAM.

Weibull type II noise pdf for DMT signals

Using the alternative bivariate Weibull distribution of type II, the combined noise pdf for
�

-

DMT modulation can be calculated from:

8B6BA�A1C DFE ��� � I�� A � �
�
�

� � �
� � � � � � � � � � � � 	 � 
 8 � � � �>O� ��� � � � �� � � � � C � �

	 6 
� ; � 
$ � � "
" 8 ��� � �>O� ��� A � � �� � � � � C � �

	 6 
� ; � 
$ � � I (5.23)

120



Theoretical analysis of errors in DSL systems in impulse noise environment

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

BER of Single Carrier 64QAM − Weibull

SIR, dB

B
E

R

Bivar Weibull − Type I
Bivar Weibull − Type II

p = 0.05 

p = 1e−6 

p = 1e−4

Figure 5.3: Analytical performance of SC-64QAM with SBR = 30 dB and impulse noise am-
plitudes modelled with bivariate Weibull distribution type I (correlated) and type
II (independent variables).

where �
�� C � � � � 	 � � � 
$� , the function

8 >?� ��@ � � H
� � � � 	 @ 	 
 	 H

� 	 � � � 9 � � is the marginal pdf of the

bivariate type II - Weibull distribution, and
8 ��� � �>?� ��@ �

denotes � -fold convolution of the function8 >O� ��@ � .
Note that Equation 5.23 specifies only one-dimensional convolution, which in the general case

is defined as
8 H ��@ � � 8 � ��@ � � � �	 �

8 H �
�
� 8 � ��@ � � � . � . Therefore, this approach is computation-

ally much less intensive than the one using the original type I - Weibull pdf.

After evaluating the noise pdf (5.23), it can be integrated numerically in the limits specified

in (5.8), and then the probabilities of correct detection can be substituted in (5.7) to yield the

symbol error probability.

5.2.6 Single-carrier vs. multi-carrier QAM in impulse noise

The analysis laid out in previous sections is used here to consider the bit error rate (BER) for

single carrier 64QAM (Fig. 5.4), and for 256-carrier 64QAM (Fig. 5.5) for various values of

the impulse probability � .

As it can be seen from the two figures, multi-carrier (MC) QAM outperforms single-carrier

(SC) QAM for high values of SIR, because the DFT operation spreads the impulse over all
�
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Figure 5.4: Analytical performance of SC-64QAM in local loop impulse noise with SBR = 30
dB.
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Figure 5.5: Analytical performance of 256-carrier 64QAM in local loop impulse noise with
SBR = 30 dB.
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data symbols and diminishes the noise impact. For low SIR, however, MC QAM has a higher

error rate than the SC QAM due to the fact the the noise level is high and after the spreading

it affects the majority of subchannels. Note that for very low values of SIR, the error rate of

MC QAM still remains higher than that of SC QAM even if the impulse probability p is small.

This is a result of the heavy tail of the Weibull distribution, which is related to the tendency of

impulse amplitudes to exhibit occasionally very high amplitudes.

5.3 Impulse duration and inter-arrival time estimates

It was pointed out in Section 3.2.3, p. 36, that in addition to the impulse amplitudes, the statisti-

cal description of impulse noise in the time domain involves two more temporal characteristics,

namely impulse duration and inter-arrival times [3]. The current section discusses the analytical

approach to obtaining averaged estimates of these two characteristics.

Impulse duration

The impulse length
�

can be modelled with a log-normal mixture distribution [82, 83], as dis-

cussed in Section 3.2.3, p. 40. The mean impulse duration
��

equals the first moment of the pdf8 ! ��� � and can be found from the following expression:

�� � 
 �	 �
� 8 ! ��� � . � � & �BH � 
 
 � ; � � � � � & � � � � 
 

 ; � I (5.24)

where
&

, � H , �GH , � � , and
� � are the parameters from Equation 3.7. E.g. for

& � � , � H � � � � 
 ,
and

� H � � � � � (see Table 3.2), the mean duration
�� � 
 ��� � � � � .

However, the estimate provided by the mean value is slightly biased upwards by the tail of the

distribution. Therefore, it may be preferable to use the median impulse duration
� H ; � , which

can be found by solving the equation:


 �� ��� 

8 ! ��� � . � � �

�
	 & 
 /10�2 � ��� ��� H ; � ) �BH �� H � � � � � � � & � 
 /10�2 � ��� ��� H ; � ) � � �� � � � � � ���

(5.25)

For the same example of
& � � , � H � � � � 
 , and

�BH � � � � � , the median impulse duration is

simply
� H ; � � �BH � � � � � .
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Inter-arrival time

In Section 3.2.6, p. 54, an inter-arrival times model based on a Markov renewal process with
� 
 states was presented, where the time is divided into

� 
 non-overlapping time ranges S � ,
and the inter-arrival time in each range is described by a pdf

8 Q � ��R � , � � � I � � � I � 
 ,
R � S �

[5]. The mean inter-arrival time
�R

can be represented as a weighted sum of the means for the

different time ranges as follows:

�R �
���
�

� � H � � �R Q � �
���
�

��� H � � �
Q � R 8 Q � ��R � . R
� Q � 8<Q � ��R � . R

I
(5.26)

where
�R Q � denotes the mean inter-arrival time for the time range S � , � � � I � � � I � 
 . The prob-

ability � � that a Markov process occupies state � , � � � I � � � I � 
 , indicates the likelihood that

the inter-arrival times belong to range S � . The state probabilities must satisfy the requirement� ���� � H � � � � and their limiting values can be calculated using the expression [104]:

� � � � ����� I
(5.27)

where � � � � H1I � � I � � � I � ��� 
 is the steady-state probability vector formed by the
� 
 -state

probabilities, and
� ����� is the Markov transition probability matrix as defined in Equation 3.16.

If the four-state Markov model presented in Section 3.2.6, p. 56 is used as an example, with

transition probabilities given in Equation 3.19, and pdfs specified by the all-Pareto model in

Table 3.5, it is possible to calculate the steady-state probabilities, the range mean times, and the

overall mean inter-arrival time as shown in Table 5.1.

State 1 2 3 4
Range � ��� s � �������	� s �	� �������	��� s �
����� �

Steady-state probabilities � � � ��� � ��� � ��� �%� ���*� � " � �%� �#' � � & �,�%� �����
Range mean times, s

������ �,�%� � ��� ������ ��'(� ��!�� ������ ��' ��� ! � ����
	�� � � � � �
Overall mean time, s

�� �,��'(� ���

Table 5.1: Mean inter-arrival times for a Markov model with transition probabilities as in
Equation 3.19 and all-Pareto pdfs specified in Table 3.5.
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5.4 Data errors in ADSL

In Section 5.2, an impulse noise model at symbol level was introduced and applied to estimate

analytically the impulse noise impact on multi-carrier QAM (DMT) in the general case. Build-

ing on that analysis, it will now be shown how estimates of the data errors at higher layers can

be obtained in the particular case of ADSL framing.

5.4.1 General considerations

Analysis of impulse noise measurements conducted on the Deutsche Telekom (DT) network

concluded that less than 1% of all impulses have a length of 200 � s or more [88]. The same

conclusion was reached for impulses measured on British Telecom lines [85]. It was also

discussed in Section 2.5.2, p. 15, that the length of a DMT symbol is 250 � s from a bit-level

perspective, or approximately 246.4 � s after inserting an extra synchronisation symbol every

68 ADSL frames [1, 11]. It can therefore be concluded that no significant impulse events have

a duration longer than that of a DMT symbol.

Furthermore, simulations using the platform described in Chapter 4 showed that less than 5%

of all impulses span between two consecutive DMT symbols, and an even smaller proportion

are capable of injecting a significant level of noise energy to both symbols. In other words, it

can be accepted with a reasonable accuracy that an impulse event is likely to only affect one

DMT symbol.

Impulse probability

The Bernoulli-Weibull model defined in Section 5.2.1 includes as a parameter the impulse prob-

ability � . The ratio between impulse length and ADSL symbol duration discussed above re-

quires a special approach to deal with � in the case of ADSL. The impulse probability
����� � �

can be represented as:

� ��� � � �
� H ; ��R �

� � ' 
+!�R 
 � H ; �� � ' 
 ! �
� ��� �
� 
 ����� � 	 � � ��I (5.28)

where
� H ; � is the median impulse duration,

� � ' 
 ! is the length of the DMT symbol in ADSL,

and
�R

is the mean impulse inter-arrival time. In order to facilitate the subsequent analysis

of data errors in ADSL, the impulse probability
������� �

has been split into the probability
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Figure 5.6: Symbol error probability in the ADSL subcarriers during an impulse event, for con-
ditional impulse probability

����� � 	 � � � � ��� �	� 

and bit loading as in Figure 4.3

- no trellis coding.

�������
� � � � ' 
 ! ) �R that the DMT symbol will experience an impulse event, and a conditional

probability of impulse noise
�������
	 ���
� � � H ; � ) � � ' 
+! , if the considered DMT symbol has been

hit by an impulse event.

For example, for
� � ' 
+! � � �	� ��� � s, and

�R � 
�� ����� � and
� H ; � � � � � s from the example in

Section 5.3, the total impulse probability
����� � � � 
 � 
�
 
 � � 	 � , the probability for impulse

event
����� � � � ����� � 
 � � 	�� , and the conditional impulse probability

����� � 	 � � � � ��� �	� 

.

5.4.2 ADSL subcarrier symbol error probability

Due to the adaptive bit loading in ADSL, the data symbols transmitted in each subcarrier have a

different error probability depending on the constellation size, allocated energy, the line transfer

function and the noise level in the subcarrier.

An example of the symbol error probability per carrier in ADSL during an impulse event has

been plotted in Figure 5.6. The calculations have been carried out using the Bernoulli-Weibull

noise model and the approach suggested in Section 5.2.5, with conditional impulse probability
�������
	 ���
� � ��� �	� 


. The bit loading is as shown in Figure 4.3 - non-trellis coded case, with

672 bits per DMT symbol, i.e. 2 Mbps user data and 640 kbps overhead including 16 FEC bytes

per codeword, and default physical parameters as specified in Section 4.3.5. A comparison

between Figures 4.3 and 5.6 shows clearly that for smaller constellations the symbol error

probability is lower.
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5.4.3 Byte error probability

The bytes in the ADSL frame are composed of bits which in the general case may be transmitted

in different subcarriers and have different bit error rates. If the bits that constitute a byte have

error probabilities
� � C � I � � � � � � �

, then the byte error probability
� � C � ' 
+! will be:

� � C � ' 
 ! � � �
�

�
� � �
� � � � � C � � � (5.29)

Since the impulse noise has a high power relative to the received signal power, the bit error

probability is close to its maximum. Therefore, in the particular example given in the previous

section, the bit error probability varies very little - from
� � C � � ������� ��


for 2-bit constellations to
� � C � � ������� � �

for 6-bit constellations. Therefore, the byte error probability for all subcarriers

can be calculated as
� � C � ' 
 ! � ��� � ��� � . This is obviously a rather high value and shows that if

a DMT symbol is hit by an impulse, in this example it is likely that practically all bytes in the

ADSL frame will be damaged.

5.4.4 ADSL frame error probability

The probability that a DMT symbol will be hit by an impulse event is simply
����� � �

defined

earlier. Although the ADSL frame error probability depends on
�������
�

, it is also influenced

by several other factors, such as whether the DMT symbol will carry a user data frame (as

opposed to a synchronisation frame), the error correction capabilities of the FEC code, and the

interleaving depth. The frame error probability
� � C � ' 
+! can in the general case be expressed as:

� � C � ' 
+! � ����� � � 
 � �<
 �+� 
 � �J��� ! I (5.30)

where
� �<
 � � �

�
���� is the probability that the affected frame contains user information (one of

every 69 DMT symbols is a synchronisation symbol), and
� �1��� ! is a coefficient corresponding

to the FEC correction failure.

Forward error correction

It was discussed in Section 2.5.3, p. 17 that the FEC implemented in ADSL is based on Reed-

Solomon (RS) coding and executes in Galois Field GF(
� �

) with a maximum codeword length

of 255 bytes. If
�

denotes the number of redundancy bytes in the RS codeword, the code is
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capable of correcting up to
� ) � byte errors with random locations within the codeword. The

probability of FEC correction failure is given by (see e.g. [125]):

� �1��� ! � � � � 
 � � � � �
� ; ��

� � �
� � 
 >� � � �� C � ' 
 ! � � � � � C � ' 
 ! � ����� 	 � I (5.31)

where
� 
 > is the codeword size,

��
 � � is the probability of FEC error correction, and
� � C � ' 
+! is

the byte error probability in the codeword.

Interleaving

The process of interleaving has the effect of multiplying the error rate at frame level, but re-

ducing the error probability at byte level. If the interleaving depth is
-

, the correction failure

coefficient
� �J��� ! can be approximated by:

� �J��� ! �

�
� � �

� ; ��

��� �
� ��
 >� � � � � C � ' 
+!- � � � � � � � C � ' 
 !- � � ��� 	 � �� 
 - �

(5.32)

The coefficient
� �1��� ! is representative of the combined effect of FEC and interleaving on the

errors at frame level, and may have a value larger than 1, which corresponds to an increase in

the number of errored frames after interleaving and error correction.

5.4.5 Results

It is interesting to compare the analytical approach presented here with results obtained through

simulation. Figure 5.7 shows a comparison between theoretical and simulation results of the

ADSL frame error rate for two bit rates. Both the simulation and the calculations have been car-

ried out under identical conditions, with physical parameters and ADSL bit loading as specified

in the examples given earlier in this section.

The match between theoretical and simulation results is relatively good, which shows that the

assumptions, distribution estimates, and expressions employed in the theoretical analysis reflect

closely the physical reality.
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Figure 5.7: ADSL frame error rate for 2 and 6 Mbps interleaved channel with 16 RS redun-
dancy bytes and no trellis coding - theoretical vs. simulation results.

5.5 Data errors in SHDSL

SHDSL is a DSL service which caters for applications requiring symmetric network access and

is expected to prove popular with business customers. While it offers bit rates comparable to

those of ADSL, SHDSL has an entirely different framing format. A theoretical analysis of the

data errors in SHDSL due to impulse noise will be presented in this section. No simulation

analysis for SHDSL has been conducted, as SHDSL has a relatively simple modulation and

framing and the theoretical results can be expected to lie close to the results obtained through

simulation.

5.5.1 General considerations

Only features relevant to the SHDSL performance in impulse noise will be discussed here,

whereas full information can be found in [2, 29].

For the current analysis, the SHDSL system (see Section 2.6, p. 25) is considered to be in

a stationary state after the initial hand-shaking procedures. Scrambling, precoding and spec-

tral shaping are not considered since their function is related to the digital signal processing

algorithms at the receiver, which are outside the scope of this work and are assumed optimal.
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5.5.2 Analysis of PAM in impulse noise

The Bernoulli-Weibull noise model presented in Section 5.2.1 can also be used for PAM, which

is the modulation employed in SHDSL. Note, however, that since the PAM signal is only mod-

ulated in one dimension, the noise
�

will also be considered in one dimension only. The com-

bined noise probability density then becomes:

8B67C LNM?D ��� � � � 
 8 >O� ��� � � � � � � � 8 � ��� ��I (5.33)

where
�

is the combined noise,
8 >O� ��� � �

H
� � � 	 � 	 
 	 H

� 	 � � 6 � � is the univariate Weibull noise

density, and
8 � ��� � � H� ��� � �$ � 	�� 6 
 � ; � ��� � 
$ �

, �
�� � � �

� � is the univariate version of the Gaussian

background noise density.

Error probability for PAM signals

The exact expression for symbol error probability for an M-PAM symbol with
� � � �

points

at distance
.

apart is:

� 
 C LNMOD � � � �
� � 	 H � - M � � � � 	 H � � �"- � � I

(5.34)

where
- M

is the probability of correct decision for the outermost points, and
- �

- for the inner

points:

- M � Pr � � � �
.
� � I

- � � Pr � 	 � 	 � .
� � I

(5.35)

where the distance between constellation points
.

for
� �

-PAM is defined as [125]:

. � � �
� � � � �

4 
 � � �
� � � � �

� 
 � �� I (5.36)

where
4 
 , � �� , and

� 
 are respectively the symbol energy, power, and duration.

For
�

-ary PAM,
� � � �

, the symbol error probability
� 
 C LNMOD

can be transformed into bit
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error probability
� � C LNM?D

simply from [125]:

� � C LNMOD �
� 
 C LNMOD

� �
(5.37)

PAM error probability in Bernoulli-Weibull impulse noise environment

After integrating the combined noise probability density (5.33) in the limits specified by (5.35):

- M � � � � � H
� � 	 � � ) 


� � � � � � � � � � � � � � .
�
�
�� � � I

- � � � � � � � 	 � � ) 

� � � � � � � � � � � � � � � .

�
�
�� � � � (5.38)

where
� ��@ �

denotes the
�

-function (see Equation 2.5, p. 21). The symbol error probability
� 


and the bit error probability
� � can then be found using Equations 5.34 and 5.37 respectively.

5.5.3 Impulse length and SHDSL symbol duration

SHDSL uses a 16-level trellis-coded pulse amplitude modulation (TC-PAM) with a variable

symbol duration depending on the data rate [2]. If the user data rate is
� � � " � � �

� " �
kbps, where


 � � � 
��
and

� � � � �
, for

� � 
��
, � � � I � , then the symbol duration

� 
�� ' 
 ! � ��
� � ms. The symbol durations for several typical data rates are shown in Table 5.2.

User data rate,
�

1.024 Mbps 2.048 Mbps 2.312 Mbps
Symbol duration, 	��������	� 2.91 � s 1.46 � s 1.29 � s
% impulses shorter than 	 �������	� 5.65% 1.45% 1.1%
% impulses longer than ��
 	��������
� 73.5% 89.1% 91%

Table 5.2: SHDSL symbol duration and percentage of impulses for various bit rates and im-
pulse lengths model as in Section 3.2.3.

It has been concluded in [3] that less than 2% of all impulses are of a duration 1 � s or less. If the

lognormal distribution from Equation 3.7 with parameters
& � � , � H � � � � 
 , and

�GH � � � � �
(Table 3.2) is used again as an example, the percentage of impulses shorter than the symbol

or much longer than the symbol can be calculated, and the results are presented in Table 5.2.

Obviously the majority of impulse events have a length which is much larger than the duration

of the SHDSL modulation symbol.
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Impulse probability

An impulse probability as in the Bernoulli-Weibull model (Section 5.2.1) can also be defined

for the case of SHDSL with the expression:

������� � �
� H ; ��R �

� 
 � ' 
+!�R 
 � H ; �� 
�� ' 
 ! �
�������
� 
 � �����
	 ���
��I (5.39)

where
� H ; � is the median impulse duration,

� 
�� ' 
 ! is the bit-rate specific length of the symbol

in SHDSL, and
�R

is the mean impulse inter-arrival time. The impulse probability
������� �

again

has been represented as a product of the probability
����� � � � � 
 � ' 
+! ) �R that an impulse event

will occur, and the conditional coefficient
� �����
	 ���
� � � H ; � ) � 
 � ' 
+! , which gives the number

of SHDSL symbols that are likely to be affected by the impulse event.

For example, for
�R � 
�� ����� � ,

� H ; � � � � � s, and
� 
 � ' 
+! � � ���	� � s

	 � � � � � � �
Mbps, the

total impulse probability
� ��� � � � 
 � 
�
 
 � � 	 � , the probability for impulse event

����� � � �
����� 
 
 � � 	 � , and the conditional coefficient

�
��� � 	 � � � � � � � 
�
 .

5.5.4 SHDSL symbol error probability

Although SHDSL lacks the sophisticated formatting used in ADSL, it has a powerful trellis

code [2] which is able to overcome long burst errors like those caused by impulse noise. The

trellis code uses the two least significant bits to carry one encoded information bit, whereas the

two most significant information bits remain unprotected (see Figure 2.10 on p. 25).

To reflect the fact that the unprotected two most significant bits in the PAM symbol have a lower

error probability, they can be regarded as a smaller symbol of
� � � �

bits, and with a larger

minimum distance
. � � � 
 . . If it is assumed that the trellis code corrects the errors in the least

significant bit in the majority of cases, then the error probability for the unprotected bits would

represent the error probability for the whole TC-PAM symbol.

For example, for 2 Mbps at a nominal transmit power of 13.5 dBm [2], and after attenuation on

a 4 km long twisted pair with 4 mm wire, the symbol error probability (5.34) during an impulse

event (� � � ) is
� 
 C LNMOD � ��� � ����


.
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5.5.5 Byte error probability

Since one PAM symbol carries 3 bits in the SHDSL implementation, the alignment between

the PAM symbols and bytes changes. An estimate of the bit error can be obtained from (5.37).

Note that in this case
� � 


since a PAM symbol carries 3 information bits. The byte error

probability
� � C 
�� ' 
 ! can then be expressed as:

� � C 
 � ' 
+! � � � � � � � � C LNMOD � � �
(5.40)

Using the example above, the bit error probability during an impulse event will be
� � C LNMOD �

��� ��
 � , and the byte error probability
� � C 
 � ' 
+! � ��� � � �

.

5.5.6 Data block error probability

As discussed earlier, the median duration of an error burst is given by
� �����
	 ���
� � � H ; � ) � 
�� ' 
 ! .

Even in the extreme case of 2.312 Mbps data rate (
� 
�� ' 
 ! � � � � � � � ), an error burst in the me-

dian case would last 14 symbols, which is equivalent to 5.2 bytes. Such a burst is much shorter

than the length of an ATM cell (53 bytes), and even smaller than the average length of an IP

packet. Therefore, it can be assumed that the error burst falls entirely within one data block and

does not affect neighbouring data blocks.

For a data block of length
& ' � � � bytes, the data block error probability will be:

� ' � � � C 
 � ' 
+! �
&(' � � � 
 � ) ��R 
 � ���J��
 � I (5.41)

where
�

is the user bit rate in bits per second, and
� ���J��
 � is the conditional error probability

that the data block will be damaged because of an error burst. The probability
� ���J��
 � can be

calculated from:
� ���J��
 � � � � � � � � � C 
 � ' 
+! � � � � ��� � ; � � � � � I

(5.42)

where
� � C 
 � ' 
+! is the byte error probability,

& �+��� is the length of the error burst in bytes, and R

is the data rate in kbps.

Using the example above, where it was calculated that
� � C 
 � ' 
+! � ��� � � �

for
� � � � � � �

Mbps,

median error burst of
� �����
	 ���
� � � � � 
�
 symbols

	 & �+��� � ��� ���
bytes, and setting the size

of the data block to
& ' � � � � � �

bytes for the purpose of comparison with the case of ADSL, it
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is obtained that
� ���J��
 � � � and

� ' � � � C 
�� ' 
 ! � � ��� � 
 � � 	 � .

5.5.7 Comparison between SHDSL and ADSL

The theoretically calculated ADSL frame error rates for 64 byte - frames (2 Mbps), is
� � C � ' 
 ! �

� � 
 
 � � 	 � without interleaving, and
� � C � ' 
+! � 
 
 � � 	 � with a maximum interleaving depth- � � �

. It was calculated above that under the same bit rate and data block size, SHDSL

exhibits a block error rate
��' � � � C 
�� ' 
 ! � � ��� � 
 � � 	 � . Obviously ADSL can mitigate impulse

noise better than SHDSL when using the interleaving and error correction techniques, but this

comes at the expense of a significantly increased latency and system complexity.

Note also that in a non-interleaved ADSL system, an impulse event typically damages the whole

frame of 64 bytes, whereas in SHDSL the median burst length is 4.62 bytes. That is, for low

latency applications which can utilise efficiently the bit stream, SHDSL offers a much better

performance at the byte level than ADSL.

5.6 Conclusion

In this chapter, an analytical approach to estimating the errors due to impulse noise in DSL sys-

tems has been presented. A Bernoulli-Weibull impulse noise model at symbol level has been

proposed, and it has been demonstrated that other models which assume Gaussian distribution

of the impulse noise amplitudes or Rayleigh distribution of the noise powers give overly opti-

mistic error estimates when used for evaluating impulse noise in telephone lines, due to their

lighter tails in comparison with the Weibull distribution.

In order to allow for the analysis of orthogonal signals with the Bernoulli-Weibull noise model,

a two-dimensional extension of the Weibull impulse amplitudes statistic has been introduced.

The derived bivariate Weibull distribution has correlated variables, however a second type with

independent variables has also been considered and it was found that the two distributions pro-

duce almost identical error estimates. The latter bivariate distribution was used to develop a

numerical solution for the error probability in discrete multi-tone modulation, since a closed-

form expression does not exist. A comparison between single and multi-carrier QAM showed

that the spreading of noise power among the subcarriers in the process of multi-carrier demod-

ulation is beneficial at high signal-to-noise ratios (SNR), when multi-carrier QAM performs
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better, but detrimental at low SNR, when the multi-carrier performs worse than the single car-

rier QAM.

Further, a framework for calculation of data errors in ADSL has been developed on the basis of

the temporal impulse statistics. The analytical solution was found to be close to the simulation

results, which shows the accuracy of the underlying assumptions and expressions used for the

analytical approach.

The Bernoulli-Weibull noise model was also applied to SHDSL and the data errors in SHDSL

analysed. The performance of ADSL downstream was shown to be superior when the full in-

terleaving depth and error correction were used. However, the SHDSL modulation and framing

have advantages if a low latency and low byte error rate is required.
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Chapter 6
Summary and conclusions

The primary aim of the work described in this thesis is to study the impact of impulse noise

in telephone lines on the errors in DSL systems, and the way these errors affect higher layers

of the protocol stack. Errors in ATM cells, ADSL frames, and MPEG2 bitstreams transmitted

over ADSL have been investigated using simulations, and the errors in both ADSL and SHDSL

have been studied through theoretical analysis. New results have been presented concerning

impulse noise modelling, theoretical evaluation of errors due to impulse noise in the local loop,

and the error patterns of higher layer data in ADSL. In this chapter, the main conclusions of

the work are presented, some limitations are pointed out, and suggestions for future work are

proposed.

6.1 Achievements of the work

A certain volume of the work has been devoted to justifying the use and describing the aspects

of the impulse noise model used in the study. The selected BT/UE/DT model [3, 5, 82] mirrors

impulse noise statistics in both the time and frequency domain and is the most suitable model

for DSL study proposed to date. One of the contributions of Chapter 3 is a derivation of the

distribution of impulse powers from the impulse amplitude statistics. It is shown that similar

distributions of the impulse powers are obtained from both the generalised exponential and

the Weibull amplitude models, and the latter model has the advantage that the derived impulse

powers are also Weibull distributed, only with a different shape parameter from that for the im-

pulse amplitudes. New work has also been presented in the area of impulse spectral modelling,

namely a statistical analysis of autocorrelation functions of impulse samples measured in the

DT telephone network. The results suggest that DT impulse spectral statistics can be modelled

with sufficient accuracy with three spectral components, where either the three frequencies are

described with a mixture of distributions, or each frequency - with a separate distribution, and

the bandwidths are described with a single distribution.
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The BT/UE/DT impulse noise model, together with crosstalk interference models, is exploited

in Chapter 4 in a simulation of generic ADSL system. ADSL has been considered because of

the outstanding issues with its performance despite its wide use, and the possibility of using

the results for VDSL. In the process of designing the simulation platform, a new modification

of a bit loading algorithm was developed to allow convergence with simultaneous trellis code

constellation expansion and a restriction on the minimum number of bits per constellation.

The algorithm operates by biasing the target bit rate upwards by the total number of bits in

underloaded channels with less than the minimum allowed number of bits. After the algorithm

has found a solution, these underloaded channels are declared as unused. Although no analysis

of the conditions for convergence has been presented, extensive testing showed the algorithm

is stable in all cases of practical interest.

The performance of ADSL downstream, which is more important from a user point of view than

the upstream, is evaluated in terms of errors in ADSL frames, ATM cells, and MPEG2 video

bit stream, assuming that the latter two are carried over an ADSL link. These performance

measures have been chosen since they are likely to represent better the link error performance

as perceived by the user. It is found that interleaving is only useful when set at its maximum

depth. Intermediate depths degrade the performance of higher layers in comparison to no in-

terleaving, and the latter is the best option if low latency is required. No such degradation is

observed when combining several ADSL frames in one FEC codeword, but this burst error mit-

igation technique brings benefits only at low data rates due to framing restrictions in the ADSL

standard. The trellis coding as implemented in ADSL is not efficient against impulse noise,

leaving Reed-Solomon FEC coding as the only error correction technique in ADSL capable of

improving the error performance in impulse noise environment. An investigation of the impact

of crosstalk demonstrates that alien crosstalk in combination with impulse noise may worsen

the error performance in ADSL, which shows the importance of spectral compatibility in an

unbundled environment.

The clustering typical of inter-arrival times between impulses is also present in the distribution

of error-free intervals between errored data blocks. This distribution depends on the bit rate

if the intervals are measured in terms of data blocks, and therefore error-free data blocks may

be a better performance measure from the user point of view than error-free seconds. The

distribution of error-free intervals also depends on the degree to which a higher layer application

can utilise isolated unerrored data blocks which occur between error bursts. In the case of
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ATM cells, however, the error protected headers are less affected by impulse noise than the

unprotected cell payload, which hinders the detection and subsequent use of such unerrored

cells.

In addition to simulation, the problem of estimating errors caused in DSL systems by im-

pulse noise in the local loop is also addressed analytically in Chapter 5. Various works have

analysed the impact of impulse noise on modulation symbol errors assuming Gaussian dis-

tributed impulse amplitudes or Rayleigh distributed impulse powers [12–14]. Although such

an assumption offers good mathematical tractability, it does not reflect the finding that impulse

amplitudes in the local loop are better approximated with a generalised exponential or Weibull

distribution [3]. Therefore, a novel DSL-specific Bernoulli-Weibull impulse noise model was

introduced, which assumes Weibull distributed impulse amplitudes and Gaussian distributed

background noise. Analysis of the symbol errors in single-carrier QAM showed that Gaussian

or Rayleigh impulse models produce overly optimistic error estimates in comparison with the

Weibull model.

A novel extension of the Weibull impulse amplitude model to two dimensions was derived for

the case when orthogonal signals, such as QAM, need to be investigated. Since a closed-form

expression for the symbol error probability of discrete multi-tone modulation does not exist, a

numerical solution to this problem was developed. This solution is based on a bivariate Weibull

distribution with independent variables, which was shown to produce error estimates almost

identical to the originally derived bivariate Weibull distribution with correlated variables. Cal-

culation of the symbol error in single and multi-carrier QAM using the Bernoulli-Weibull model

showed that because of the impulse noise power spreading over the subcarriers, multi-carrier

QAM performs better at high SNR, but worse at low SNR than single carrier QAM.

The temporal characteristics of impulse noise were then used to calculate the data errors in

ADSL, with solutions close to the simulation results. Applying the same Bernoulli-Weibull and

impulse time statistics approach to SHDSL, it is found that ADSL downstream performs better

if maximum interleaving depth and strength of FEC code are used, but SHDSL has advantages

if low latency and low byte rate are required.

On the basis of the results presented above, conclusions about the impact of noise on higher

layers can be drawn. This impact is highly dependant on the specific protocols and applications

transmitted over DSL. If lossless data transmission is required, any errors in the data stream
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would result in retransmission requests and lower information throughput. Some real-time

applications, however, such as audio and video streaming, cannot tolerate the delay caused

by retransmission and any errors would result in information loss. In this case, high error

rates would lead to noticable artifacts in the transmitted image/sound, as can be seen from the

analysis of the MPEG2 video quality.

6.2 Limitations of the work and scope for further research

The contributions made by this study have shown that although impulse noise is a significant

impairment for DSL transmission, various framing techniques can mitigate the impact of this

noise to some extent depending on the requirements by the end user application. However,

certain assumptions adopted in this study limit the conclusions of this work from providing a

precise estimation of the errors in real DSL systems. Also, there are a number of areas where

further investigation would be worthwhile.

Firstly, this study is based on the assumption of perfect synchronisation, timing, and an ideal

channel. Obviously, these assumptions do not hold in most cases, but the influence of imperfect

conditions can be compensated through front-end digital signal processing techniques. How-

ever, such techniques are vendor specific and their performance differs, i.e. modem chipsets

from different manufacturers may exhibit different performance for the same framing parame-

ters. Although the results of this thesis are indicative, it would be interesting in future research

to evaluate the impact of imperfect channel conditions and specific front-end signal processing

algorithms on the error performance in impulse noise.

Another point of interest is to extend the impulse noise model to generate impulses with more

than one spectral component. This will make the impulse noise environment synthesised from

this model more realistic, allowing for the direct use of the spectral statistics of DT impulses

in impulse generation. A possible approach to model the statistical distributions of the com-

ponents’ frequencies and bandwidths has been suggested based on the DT data analysis. This

approach now requires verification of its applicability and specific parametrisation for the case

of DT or any other impulse data set.

It is also worth investigating the impact of crosstalk and radio-frequency interference in VDSL

systems. Since VDSL utilises a much wider frequency band the the rest of the DSL tech-

nologies, these line noise impairments become a significant issue alongside impulse noise. An
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analysis of the best approach to their mitigation can improve the VDSL capacity and reliability.

Finally, the analysis of higher protocol layers can be extended to include a larger variety of

protocol stack configurations, including TCP/IP. The impact of impulse noise errors on the

flow control is particularly important, as the flow control influences significantly the overall

throughput of packet protocols. It is known that the congestion control of best-effort protocols,

such as IP, does not function properly at high packet error rates, which results in a reduced

throughput. Adapting flow control algorithms to high error rate would allow greater flexibility

when choosing framing parameters in ADSL/VDSL, e.g. it could be possible to achieve lower

latency without compromising the overall data throughput.
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Appendix A
Power spectral densities of xDSL

signals

The power spectral densities (PSD) of xDSL signals are useful for evaluating the level of

crosstalk that these signals induce in other pairs of the same bundle. The analytical expres-

sions for the nominal PSDs of the most common versions of ISDN, HDSL, ADSL, and SHDSL

are as follows:

Power spectral density of ISDN signal

The nominal transmit PSD of 2B1Q-modulated ISDN [15–17] signal at 80 kbaud (160 kbps) is

given by [6]:
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where
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Power spectral density of HDSL signal

The nominal transmit PSD of 2B1Q-modulated HDSL [20, 22, 23] signal at 392 kbaud (784

kbps) per pair, full duplex, is defined as [6]:
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where
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Power spectral densities of xDSL signals

Power spectral density of ADSL signal

The spectrum of the DMT-modulated ADSL [1, 11, 24] signal is different for the downstream

(central office to subscriber) and upstream (subscriber to central office) directions. It is assumed

that ADSL uses all available subcarriers in each direction, and the total transmit power is such

that the PSD would not exceed the maximum allowed PSD.

Downstream

The nominal transmit PSD mask of ADSL downstream signal that uses all 256 DMT subcarriers

spaced at 4.3125 kHz and extending up to 1.104 MHz is given by [6]:
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Upstream

The nominal transmit PSD mask of ADSL upstream signal that uses all 32 DMT subcarriers

spaced at 4.3125 kHz and extending up to 138 kHz is defined as [6]:
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Power spectral density of SHDSL signal

The spectrum of the 16-PAM SHDSL [2, 28, 29] signal is bit rate dependent and its nominal

symmetrical transmit PSD is defined as [2]:
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where
8 
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kHz,
8 � 6 � is the frequency of intersection of the two functions,

� &��
is the

power back-off in dB (the nominal
� &�� � �

dB), and the remaining parameters are given in

Table A.1.

Payload data rate �����������  "!$#�%&! ' ( �*),+ , ( " �.- /0�����1� , dBm
�

, kbit/s ksymb/s
� ���#� � � 7.86 6 1 2 �43 ��576�� ��� �98:( �*),+ 6 ' / ��2 � 5��;/ �����1��� � �
�����
� �=<��	��� ��> �	� ����? 8.32 6 1 2 �43 ��576�� ��� !98:( �*),+@6 ' 13.5
�

���#���
� 7.86 6 1 2 �43 ��576�� ��� �98:( �*),+ 6 ' 13.5

/ ��2 � 5 ����� � ��� �BADC�E � 2 � 8 �	����� 3 ���
����5 3 � � � � dBm.

Table A.1: Parameters for symmetric PSD of SHDSL signal (after [2]).

143



Appendix B
Weibull distributions

Although the Weibull distribution has been considered in the literature, it is necessary to make

some comments related to its use for the analysis presented in this work.

B.1 Univariate Weibull distribution

In the general case the Weibull distribution has a probability density function (pdf) of the form:

8 >?� � � � �
	
 � � � ��
 	 H

� 	 � � � if
� � �

� � � �
� � � �

�
elsewhere

I
(B.1)

where � and � are shape parameters.

Moments

The moments
� � � 6 
 of the Weibull distribution are given by:

� � � 6 
 � 
��	 �
� 6 8 >O� � � � . � � � 	 6 ; 
 � � � � �

� � I
(B.2)

where
� ����� � � �� R � 	 H

� 	 � . R is the gamma function. Hence the mean
�� � � � � H 


and the

variance �
�� � � � � � 
 � � � � � H 


can be calculated.

Characteristic function

The characteristic function
� ��� �

of the function
8 � � �

is defined in the general case as:

� ��� � � 
��	 �
� 
�� � 8 � � � . � ��� � 8 � � ��
 � � � � ��I (B.3)

where � � 8 � � ��
 � � � denotes the Laplace transform of the function
8 � � �

over the variable � .
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The Weibull pdf, however, has a rather complicated general form of the Laplace transform,

which for the function
8 ��@ � � @ 5 � 	 ��9 " � � is given by [136]:

� � 8 ��@ ��
 � � � � � ��� 
 !�� � ��� 
 
 � � � �� ��� � � � � " 
 � 
 � � � � C !! C � � � � ! "�
� 
 "

��
�
� � ! C 	 5 �� � � C � � � I

(B.4)
� � � � � � � � � � � � � � � �

for
$ � � I � � � � � � �

for
$ � � I � � � �

� � � � �
for

$ � � I

where
� � C 6
: C�� � @ �

�
�
� � C � � � C � �� � C � � � C ��� � is the Meijer’s

�
-function defined as:
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: C	�
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(B.5)

More information about the Meijer’s
�

-function and the general conditions for convergence

can be found in e.g. [137].

Although the Laplace transform of the Weibull pdf can be simplified for certain special cases,

the general form is obviously rather cumbersome. Note also that in the Weibull impulse ampli-

tude models (see Section 3.2.3, p. 37 and [3]), the Weibull parameter � as in (B.1) is less than

1. The range � � � corresponds to the case
$ � �

, in which the Laplace transform (B.4) is

defined only for a positive real part of the Laplace variable � . The condition
� � � � � � �

, how-

ever, contradicts the definition of the characteristic function, which postulates that � ��� � �
is purely imaginary. Therefore no explicit expression of the characteristic function is available

for the analysis of the Weibull distributed impulse noise amplitudes (see also [98, 133]).

Double Weibull distribution

The double Weibull density, which is used in the impulse amplitude model instead of the origi-

nal density (B.1) to ensure symmetry of the function around zero, has the form:

8 >?� � � � � �
� � � 	 � 	 
 	 H

� 	 � � � � � � (B.6)

Note that in this case the mean is
�� � � � � H 
 � �

and the variance �
�� � � � � � 
 � � � � � H 
 �

� � � � 
 .
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B.2 Bivariate Weibull distributions

Two types of bivariate Weibull distributions have been employed in the theoretical analysis of

the impact of impulse noise on orthogonal signals. A brief outline of these distributions is

presented here. More information about multivariate Weibull distributions can be found in e.g.

[135, 138].

Bivariate Weibull distribution of type I

One possible bivariate Weibull distribution, which will be referred to as type I, is characterised

by the following ccdf:

�T >O� C A ��@%HJI�@ � � � � � � � H � @%HJI � � � @ � 
 �
� � 	 � � 9 H�� �?9 �



� ��� � I @ H I�@ � � � I � � � I � � � I � � � I

(B.7)

where � , � , and � are parameters.

The marginal ccdfs of this distribution are
�T H C � � � 	 ��9 � � � 
 [135]. The random variables

� H
and

� � are not independent and the correlation between
$�� � ��� H �

and
$�� � ��� � � is � � � 


� � � [135].

The corresponding pdf is defined as:

8 >?� C A ��@%HJI�@ � � �
� � �T >O� C A ��@%HJI�@ � �

� @PH � @ � �
� � � @ ��	

HH @ � 	 H
� � 	 � � 9 � � �?9 �



� ��� � "

" � � � � @ � H � @ � � � � � � 	 � � � � �
� � � � � @ � H � @ � � � � � 	 � � (B.8)

In the particular case of the impulse noise model the parameter � � �
, and after an expansion

of the pdf to four quadrants to achieve symmetry the expression becomes:

8 >O� C A � � � I � A � � �� 
 � � 	 � � 	 	 � A 	 � 	 � � � 
� � � 
� � ��� 
 "
" � � � � � � � � � �A � 
 	 � � � � �� � � � � � � � � � �A � � 
 	 � � (B.9)
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Bivariate Weibull distribution of type II

Another form of bivariate Weibull distribution is given by:

�T >?� C A�A ��@%H1I�@ � � � � � � � H � @%HJI � � � @ � 
 �
� � 	 � � 9 � � �?9 �



� I @%HJI�@ � � � I � � � I � � � I

(B.10)

where � and � are parameters.

The marginal ccdfs of this distribution are again
�T H C � � � 	 ��9 � � � 
 . Unlike the type I bivariate

Weibull, however, the random variables
� H

and
� � here are independent.

The corresponding pdf is defined as:

8 >O� C A�A ��@PHJI�@ � � �
� � �T >?� C A�A ��@PHJI�@ � �
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� �

(B.11)

After an expansion of the pdf to four quadrants to achieve the symmetry required by the impulse

amplitude model the expression becomes:

8 >?� C A�A � � � I � A � � �� 
 � � � � 	 � � 	 
 	 H
	 � A 	 
 	 H

� 	 � � � � �
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(B.12)
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Abstract*–This paper  considers the cell er ror  per formance of 

ATM over  Digital Subscr iber  L ines (DSL) in the presence of 
impulse noise. 

 
In recent years there has been an increasing interest in xDSL 

technology due to its relatively broad bandwidth and ease of 
deployment.  ATM is a prefer red protocol over  DSL.  ATM, 
however , has been designed for  low bit er ror  rates.  Despite 
er ror  cor rection protocols, DSL cannot always overcome bursty 
er rors, par ticular ly impulse noise.  Interest in DSL has tr iggered 
research into impulse noise.  A new model has been developed 
based on surveys on exper imental data. Using this model the 
impact of impulse noise on ATM cell er ror  per formance has 
been traced.  Var ious DSL framings have been found to affect 
adversely the ATM stream. The inter leave depth should be 
either  1 or  large enough to cor rect the er rors. The per formance 
in terms of header  and payload er rors differs. Time between 
er rored cells exhibits cluster ing like interar r ival times.  I t is 
possible within one impulse event to have “ good”  cells between 
er rored cells. And finally, for  higher  level applications er ror  free 
cells is a more appropr iate metr ic than er ror  free seconds. 

 

I. Introduction 

In recent years DSL has been gaining popularity as a 
network access technology.  A major impairment of DSL is 
impulse noise on the line. This prompted new research into 
this noise and its statistics. Proposals for an impulse noise 
model applicable to DSL have only recently been released [3-
6]. 

 
A crucial aspect of a transmission technology is how it 

affects higher layers from the protocol stack.  ATM is often 
quoted as one of the preferred protocols for transmission over 
DSL.  Impulse noise introduces errors in the DSL system.  
ATM, however, has been primarily designed for an error free 
transmission medium.  Thus the impact of errors at the DSL 
layer on ATM has to be determined precisely. 

 
Different applications have different requirements on lower 

layers. Voice requires low latency and tolerable error rate, 
whereas data requires lossless transfers where errors can only 
be overcome by retransmission.  If ATM is used as a link 

                                                
* This work was supported by Fujitsu Telecommunications Europe Ltd. 

protocol it will be important to have information about the 
cell error performance. 

 
This paper presents results of simulation of an ATM over 

ADSL system for different bit rates and framing on the DSL 
level. There has been similar research on influence of impulse 
noise on ATM/DSL with analysis of the end-to-end TCP/IP 
performance as well [8]. The current work gives further 
details about the behaviour and statistics of an ATM stream 
impaired by impulse noise, and the new and most accurate to 
date impulse noise model has been used [3,5,6]. Crosstalk 
from other pairs in the bundle has been accounted for.  The 
performance metrics used are cell/header/payload error rate 
and statistics of interarrival times between errored cells. 

 

II. Simulation design 

Description. The simulation model (Fig. 1) is a generic 
ADSL modem as defined in [1] (except for trellis coding 
which is optional in the standards).  Only the downstream 
direction is modelled since it is with larger bandwidth, in a 
higher frequency range and thus more susceptible to noise 
than the upstream.  Up to four input channels are multiplexed 
either in a fast or in an interleaved path. Discrete Multi-Tone 
(DMT) modulation is used as defined in [1]. The noise 
models are described below. 

 
Crosstalk is taken into account during DMT initialization.  

The specified bit loading algorithm is based on maximizing 
the system performance margin for a given bit rate [7].  We 
only consider kindred crosstalk, i.e. from other ADSL 
systems.  The utilized crosstalk model is as described in [1] 
for worst case scenario with 49 interfering pairs in a bundle 
of 50 pairs. 

 
Impulse noise.  Several papers [3-6] suggest an impulse 

noise model suitable for the bandwidth and specifics of the 
DSL technology.  It is based on two large-scale surveys of 
impulse noise on real telephone lines. These have been 
carried out independently by Deutsche Telekom and joint 
British Telecom/Edinburgh University teams.  That model is 
considered the most up-to-date and accurate one.  Therefore it 
has been used for the research presented in the current paper.  
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In the utilized impulse noise model three statistics are 

used: pulse lengths, energies and interarrival times.  Lengths 
and voltage amplitudes are modelled with the distributions 
defined by eq. (1) and (2) [5,6] 
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where B, s1, s2, t1, and t2 are parameters for the distribution 
of impulse lengths t, and u0 is a parameter in the distribution 
of impulse amplitude u. 

 
Interarrival times between noise pulses have been found to 

exhibit a high degree of clustering. To take this into account a 
Markov chain is used. Each state matches a time region of the 
interarrival times.  Different states are described by 
separately parameterized and possibly different distributions 
to fit best the experimental data. For our simulations a 
Markov chain with four states has been used as proposed in 
[3]. Each state resembles a Pareto distribution as defined by 
(3): 

0,0,,)( 1 >>≥= + ασστ
τ
αστ α

α

kf  (3) 

here α and σ are parameters, and τ is the interarrival time 
between pulses. 

 
Symbol error probability.  [1] postulates that Quadrature 

Amplitude Modulation (QAM) is used for each DMT 
subchannel.  For an M=2k-ary QAM and k-even, the symbol 
error probability is given [2] by eq. (4): 
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      (4) 
where erfc is the complementary error function and SNR is 

the signal to noise ratio.  A tight upper bound is known for 
M-ary QAM for any k (including odd values), namely (5): 
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This bound, however, is too pessimistic for low values of 
M, and it yields error probability larger than 1 for low SNR 
values.  That is why eq. (4) is used to determine bit allocation 
and simulation of QAM symbol errors under specific noise 
levels for all values of k. 

  
Simulation approach.  The initialization period of the ADSL 
link is not considered.  It is assumed that the DSL symbol and 
frame synchronizations remain stable despite the noise.  
Simulation runs are carried out for different interleaving 
depths, bit rates and strength of error correction code.  All 
runs, including those with various bit rates, are over an equal 
number of DSL frames for the purpose of comparison. 

 

III. Results 

A. Frame/cell error rate  

As can be seen (Fig. 2), interleaving makes sense only for 
depths large enough for the error correction code to cope. 
Services requiring low latency (voice, video-conferencing) 
should use no interleaving. For services tolerant to delay, e.g. 
video on demand, it will be more feasible to use large 
interleaving depths. The strength of the error correction code 
affects the performance at the cell level – it leads to lower 
“cut-off”  interleaving depth. For applications using 
interleaving better error protection will reduce the boundary 
“cut-off”  depth and is thus recommendable. Performance in 
terms of ATM cells differs from that of DSL multiplexed data 
frames (after deinterleaving if applicable and FEC).  At the 
considered bit data rates (2 Mbps to 6 Mbps) DSL mux 

Fig. 1: Block diagram of the simulation software (ADSL 
modem - generic, downstream only). 
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frames are larger and there is a higher probability that they 
will be damaged than ATM cells. If the performance of a 
DSL system is evaluated solely on the basis of errored DSL 

mux frames, the performance estimation will be inaccurate 
and pessimistic. 

 

Fig. 3: Header/payload error probability 

Fig. 5: Seconds of error free cells 
ID=1, various bit rates 

Fig. 2: Mux frame/cell error probability 

Fig. 4: Seconds of error free cells 
6 Mbps, various interleaving depths 
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B. Header/payload error probability 

Due to the smaller size of the headers their error 
probability is lower than the payload error probability (Fig. 
3).  Moreover, errors in headers are much less affected by 
changes in the interleaving depth than the payload. At the 
critical interleaving depth (with largest cell error rates) the 
discrepancy between header and payload error rates is largest. 
If a header is errored the cell is discarded. A significant 
proportion of the cells, however, have valid header but 
damaged payload. I.e., error detection and/or correction have 
to be provided at higher levels to avoid protocol/application 
confusions due to undiscovered errors. It should be pointed 
out that these results are for inter-cell interleaving.  

 
C. Seconds of error free cells 

For larger interleaving depths the error correction removes 
most of the errors and the graph shift towards larger number 
of error free cells (fig. 4). In general, for lower cell error 
probability (this trend is not unambiguously related to 
interleaving depth) the graphs shift to higher seconds of error 
free cells. It should be noted that despite these shifts the 
clustering remains as a characteristic. 

 
The statistics of error free seconds do not change 

significantly with various bit rates (fig. 5), because at low 
interleaving depths (in this case 1) the cell error probabilities 
are similar.  For the worst interleaving depths (close but 
lower than the cut-off value) larger dependence should be 
expected. 

 
D. Minimum acceptable number of unerrored cells 

Within one impulse event there may be several unerrored 
cells between the errored ones.  It is up to the application 
running over ATM to utilize them.  It is very unlikely that an 
IP packet can make use of them due to its much larger size. 
Other applications, however, such as voice based on AAL2, 
can benefit from such isolated unerrored cells.  The statistics 
of seconds of error free cells change if a different minimum 
number of unerrored cells is tolerated. Most error free periods 
concentrate around smaller values and the graph is shifted 
downwards (fig. 6). 

 
The changes in the shape of the distributions of error free 

seconds have to be taken into account if quality of service 
requirements are specified by means of graphs of such 
distributions. 

 
Please note that the error free seconds in Fig. 4, 5, and 7 

are derived for a minimum acceptable number of five 
unerrored cells. This relatively large number has been chosen 
for the purpose of comparison and clearer analysis. For the 
given DSL framing and ATM cell size, any smaller minimum 
number of unerrored cells will lead to excessive change in the 

shape of the distributions and will cover to some extent the 
impact of changes in other parameters.  

 
E. Error free seconds or error free cells 

The metric error free seconds is very much preferred in the 
DSL world.  From the point of view of higher level 
applications, however, this might not be the best metric.  For 
different bit rates one unit of time contains a different number 
of cells.  Thus the distribution of consecutive error free cells 
differs from that for seconds of error free cells.  For larger bit 
rates the distribution shifts towards larger number of 
consecutive error free cells (compare Fig. 7 with fig. 5). 
Higher levels will rather be interested in error free cells or 
even payload bytes/bits. 

 

Fig. 6: Seconds of error free cells 

Fig. 7: Error free cells (vs. error free seconds , 
see fig. 5). 
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IV. Conclusion 

This work tries to analyze the impact of impulse noise on 
ATM when carried over DSL.  The latest impulse noise 
models and current DSL standards have been utilized in the 
research. 

 
The DSL framing has been found to have a very diverse 

impact on the cell error rate performance.  The proper choice 
of interleaving depth (also reported in [8]) and error 
correction code need to be made if low cell error rates are to 
be obtained.  The distribution of error free seconds exhibits a 
high degree of clustering, similar to the one shown by 
interarrival times of impulse noise. 

 
Protocols transported over ATM may not utilize the ATM 

stream to full extent, if only few unerrored cells are found 
between errored ones.  E.g. for Voice over ATM over DSL 
good use could be made of few unerrored cells between error 
bursts, whereas for applications based on IP over ATM this is 
not the case. The effective error free seconds’  distribution as 
seen from higher layers varies according to the degree an 
application can utilize unerrored cells between error bursts. 

 
The error free seconds, used widely to characterize a DSL 

system, are less suitable from the application point of view.  
For higher protocol layers, error free cells or even transported 
error free bytes would be more appropriate. This is to reflect 
the various bit rates one may come across among the DSL 
systems. 
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Appendix D
CD

This appendix describes the contents of the CD accompanying the thesis. The CD contains

files of MPEG-2 video bitstreams which illustrate the impact of impulse noise on the quality of

video transmitted in the downlink of an ADSL system.

D.1 CD contents

The MPEG-2 video bitstream files are divided into two directories. The mpeg2 1.5Mbps/

directory contains video files at 1.5 Mbps, and the mpeg2 4.0Mbps/ directory - at 4 Mbps.

The files in both directories are labelled as mpeg2test bbbb cccc.mpgwhere:

� bbbb is the bitrate: 1.5M = 1.5 Mbps, and 4.0M = 4 Mbps.

� cccc is the bitstream type: orig = original [129], and idNN = transmitted, where NN

= 01, 02, 04, 08, 16, 32, or 64 is the interleaving depth.

D.2 Software requirements

In order to view the video files supplied with this CD, you will need to have an MPEG-2 video

bitstream player installed on your computer. A suitable shareware version of a such a player

for the MS Windows 9x, Me, NT 4.0, 2000, and XP operating systems can be donwloaded free

of charge from [139] (as of February, 2003).

Note that on encountering an error in the video bitstream, some video decoders jump to the next

“good” video frame, rather than show images destorted by errors. In order to appreciate fully

the impact of errors on the video quality, and the difference between this quality for different

interleaving depths, you need to use a decoder which shows all (including the errored) video

frames, such as the decoder suggested above.
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