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Abstract

As peer-to-peer applications become popular, an un-
precedented increase in user-to-user traffic has been ob-
served worldwide, particularly in Japan due to its high
penetration rate of broadband access. In this paper, we
first report aggregated traffic measurements collected
over 15 months from seven ISPs covering 41% of the
Japanese backbone traffic. The backbone is dominated
by symmetric residential traffic which increased 45% in
2005. We further investigate residential per-customer
traffic in one of the ISPs by comparing DSL and fiber
users, heavy-hitters and normal users, and geographic
traffic matrices. The results reveal that a small segment
of users dictate the overall behavior; 4% of heavy-hitters
account for 75% of the inbound volume. The fiber users
account for 86% of the inbound volume, and 62% of the
total volume is user-to-user traffic. The dominant ap-
plications have poor locality and communicate with a
wide range and number of peers. The distribution of
heavy-hitters follows power law without a clear bound-
ary between heavy-hitters and normal users, which sug-
gests that ordinary users start playing with peer-to-peer
applications, become heavy-hitters, and eventually shift
from DSL to fiber. We provide conclusive empirical ev-
idence from a large and diverse set of commercial back-
bone data that the emergence of a new attractive appli-
cation has drastically affected traffic usage and capacity
engineering requirements.

1 Introduction

As peer-to-peer applications have become popular over
the past few years, an unprecedented increase in user-
to-user traffic has been observed worldwide, particularly
in Japan due to its high penetration rate of broadband
access. The traffic growth in Japanese backbones is il-
lustrated by the aggregated peak traffic at major IXes
— JPNAPJ[10], JPIX[9], and NSPIXP[17] — shown in
Figure 1.

Although a large part of the traffic increase on com-
mercial backbones is often attributed to peer-to-peer
traffic, there is little work in literature that has statistics
detailed enough to prove it. It is also difficult to plan for
the future because residential access and its traffic are
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Figure 1: Traffic growth of the peak rate at the major
Japanese 1Xes

undergoing a transformation; new innovations in access
networking technologies continue to be developed, and
new applications as well as their usage are emerging to
take advantage of low-cost high-speed connectivity. In
Japan, the number of FTTH subscribers is increasing
exponentially while the increase in DSL subscribers is
slowing down as shown in Figure 2 [28].
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Figure 2: Increase of residential broadband subscribers
in Japan: 21 million total broadband subscribers, 14
million for DSL, 3 million for CATV, and 4 million for
FTTH as of September 2005.

There is a strong concern that if this trend continues
Internet backbone technologies will not be able to keep
up with the rapidly-growing residential traffic. More-
over, commercial ISPs will not be able to invest in back-
bone networks to support this traditionally low-profit
customer segment.

It is essential to sustain evolution of the Internet in-



frastructure that we understand the effects of growing
residential traffic, but it is difficult both technically and
politically to obtain traffic data from commercial ISPs.
Most ISPs are collecting traffic information for their in-
ternal use but such data contain sensitive information
and are seldom made available to others. In addition,
measurement methods and policies differ from ISP to
ISP so that it is in general not possible to compare a
data set with another set obtained from a different ISP.

Seeking a practical way to investigate the impact
of residential broadband traffic on commercial back-
bone networks, we formed a study group with special-
ists including members from seven major commercial
Japanese ISPs in order to identify the macro-level im-
pact of residential broadband traffic on ISP backbones.
Specifically, we are trying to obtain a clearer grasp of
the ratio of residential broadband traffic to other traf-
fic, changes in traffic patterns, and regional differences
across ISPs.

We have collected aggregated bandwidth usage logs
for several categories of traffic. The results show that
the backbone traffic is dominated by symmetric residen-
tial traffic that is increasing at 45% per year.

Using these statistics as reference points, we have per-
formed further analyses of residential traffic data pro-
vided by one of the ISPs. The results reveal surprisingly
diverse behavior of residential traffic.

2 Data Collection

Our data sets were collected using two different meth-
ods. The first set was collected by aggregating interface
counters of edge routers from seven ISPs for a macro-
scopic view of residential traffic. The other set was col-
lected by Sampled NetFlow [1] from one of the ISPs for
detailed per-customer analysis.

2.1 Data Collection of Aggregated Traf-
fic

We found that most ISPs collect interface counter values
of almost all routers in their service networks via SNMP,
and archive per-interface traffic logs using MRTG [20]
or RRDtool [19]. Thus, it is possible for the ISPs to pro-
vide aggregated traffic information if they can classify
router interfaces into a common set.

There are several requirements in order to solicit ISPs
to divulge traffic information. We need to find a com-
mon data set which all the participating ISPs are able to
provide with moderate workload and investment. The
data set should be coarse enough not to reveal sensitive
information about the ISP but be meaningful enough so
that the behavior of residential broadband traffic can be
analyzed. The data sets should be able to be aggregated

with those provided by other ISPs so that the share of
each ISP is not revealed.
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Figure 3: Five traffic groups at ISP customer and ex-
ternal boundaries for data collection

Our focus is on traffic crossing ISP boundaries which
can be roughly divided into customer traffic, and ex-
ternal traffic such as peering and transit. For practical
purposes, we selected the 5 traffic groups shown in Fig-
ure 3 for data collection.

(A1) RBB customers are residential broadband cus-
tomer lines. This group includes small business cus-
tomers using residential broadband access.

(A2) non-RBB customers are customer lines other than
RBB customers, including leased lines, data centers,
and dialup lines. This group includes RBB customers
behind leased lines, e.g., second or third level ISPs,
since ISPs do not distinguish them from other leased
lines.

(B1) external 6IXes are links for 6 major IXes, namely
JPNAP, JPIX and NSPIXP in both Tokyo and Osaka
in order to compare measurements at these IXes as well
as to know the traffic share of our measurement.

(B2) external domestic links are domestic external links
other than the 6IXes, including regional IXes, private
peering and transit. We used the term “domestic” to
mean both ends of a link are in Japan. This group also
includes domestic peering with global ASes.

(B3) external international are international external
links.

(C) prefectural links are RBB links divided into 47 pre-
fectures in Japan. This group is a subset of (A1), and
covers two major residential broadband carriers who
provide aggregated links per prefecture to ISPs. Other
RBB carriers whose links are not based on prefectures
are not used for this group.

It is impossible to draw a strict line for grouping, e.g.,
residential /business and domestic/international, on the
global Internet, so these groups are chosen by the exist-
ing operational practices of the participating ISPs. We



re-aggregate each ISP’s aggregated logs, and only the
resulting aggregated traffic is used in our study so as to
not reveal the share of each ISP.

Our main focus is on (A1), RBB customers, but we
examine the other categories to understand the relative
volume of (Al) with respect to other types of traffic
as well as to cross-check the correctness of our results.
(A2), non-RBB customers, is used to obtain the ratio
of residential broadband traffic to total customer traf-
fic. The total customer traffic (A) is (A) = (A1) + (A42).
(B1), external 61Xes, and (B2), external domestic, are
used to estimate the coverage of the collected data sets.
(B3), external international, is used to compare domes-
tic traffic with international traffic. The total external
traffic (B) is (B) = (B1)+(B2)+(B3). (C), prefectural,
is used to measure regional differences.

In general, it is meaningless to simply sum up traffic
values from multiple ISPs since a packet could cross ISP
boundaries multiple times. Customer traffic is, however,
summable because a packet crosses customer edges only
once in each direction, when entering the source ISP
and exiting the destination ISP. The numbers for ex-
ternal traffic are overestimated since a packet could be
counted multiple times if it travels across intermediate
ISPs other than ingress and egress ISPs. However, the
error should be relatively small in this particular result
since the ISPs in our data sets are peering, not providing
transit to each other.

We collected month-long traffic logs from the partic-
ipating ISPs. The collected logs have a time resolu-
tion of two hours since it is the highest common factor
for month-long data. This is because both MRTG and
RRDtool aggregate old records into coarser records in
order to bound the database size. In MRTG, 2-hour
resolution records are maintained for 31 days in order
to draw monthly graphs. RRDtool does not have fixed
aggregation intervals but it is most likely that RRD-
tool is configured to maintain 1-hour or 2-hour resolu-
tion records needed for monthly graphs. Although the
peak rate is often used for operational purposes, only
the mean rate is collected since the peak rate is not
summable.

We developed a perl script to read a list of MRTG
and RRDtool log files, and to aggregate traffic measure-
ments for a given period at a given resolution. It out-
puts “timestamp, in-rate, out-rate” for each time step.
Another script produces a graph using RRDtool. We
provided the tools to the ISPs so that each ISP could
create aggregated logs by themselves. This allows ISPs
not to disclose the internal structure of their network or
unneeded details of their traffic.

The highest workload for the ISPs is to classify the
large number of per-interface traffic logs and create a log
list for each group. For large ISPs, the number of ex-
isting per-interface traffic logs can exceed 100,000. To

reduce the workload, ISPs are allowed to use the in-
ternal interface of a border router instead of a set of
external (edge) interfaces if the traffic on the internal
interface is an approximation of the sum of the external
interfaces. In this case, we instruct the tool to swap
“in” and “out” records since the notation in the per-
interface logs depicts the perspective of the routers but
inbound /outbound records in our data sets signify the
ISPs’ point of view.

We analyzed month-long traffic logs from seven ma-
jor Japanese ISPs five times over 15 months; Septem-
ber, October, November in 2004, May and November in
2005. To check consistency, we collected the data sep-
arately in each month. These results are consistent so
that we are fairly confident about their accuracy. After
the first three months, we confirmed the consistency in
the results and decided to collect data only twice a year
to reduce the workload of the participating ISPs.

2.2 Data Collection of Per-Customer
Traffic

In order to further analyze the behavior of residential
traffic, we obtained Sampled NetFlow data from one of
the participating ISPs. This ISP has residential broad-
band customers over DSL and fiber but not over CATV.
The data were collected from all edge routers accommo-
dating residential broadband customers. The sampling
rate used was 1/2048 so as to not overload the routers.
We believe it is enough for analyzing heavy-hitters but
there is a certain amount of sampling error, especially
for lightweight users. The traffic volume is derived by
multiplying the measured volume by the sampling rate.

A week-long data set was collected five times: April,
May, October in 2004, February and July in 2005. In
this paper, we use only the two sets from February and
July 2005.

Data from February 2005 was used to analyze per-
customer behavior from Section 4.1 through 4.3 by
matching customer IDs with the assigned IP addresses.
The ISP provided the inbound/outbound traffic volume
of each customer in one hour resolution as well as cus-
tomer’s attributes: the line type (DSL or fiber), and the
prefecture.

Data from November 2005 were used to analyze
geographic communication patterns from Section 4.4
through 4.5. In our data, one end of a flow is always
the residential customer of the ISP but the other end is
generally a customer of another ISP. Therefore, it is not
possible to classify both ends by the ISP’s information
alone. For this reason, we used two geo-IP databases,
Cyber Area Research Inc’s SUTFPOINT and Digital
Envoy’s Netacuity, to classify both ends of the flows.
The former database maps the address blocks of do-
mestic residential customers to prefectures, but it does



not cover non-residential addresses such as data-centers
and leased-lines. The advantage of using this database
is that we can distinguish residential users from other
domestic users. The addresses not covered by the for-
mer database are classified simply into domestic and
international by the latter database. Here, domestic
corresponds mainly to data-centers and leased lines in
Japan, but it also includes residential address blocks not
listed in the geo-IP databases.

3 Analysis of Aggregated Traffic

The results were obtained by aggregating all traffic logs
provided by the seven ISPs. Each ISP provided month-
long traffic logs with 2-hour resolution. Both MRTG
and RRDtool compute 2-hour boundaries in UTC so
that the boundaries fall on odd hours in Japanese Stan-
dard Time (UTC+9). Throughout the paper, inbound
and outbound are presented from the ISPs’ point of view.

3.1 Growth of Traffic

The monthly average rates in bits/second of the traffic
groups are shown in Tables 1 through 4. Table 1 shows
the average rates of aggregated customer traffic, and the
growth rates are shown in Figure 4. The growth rate
of the RBB customer traffic (A1) is 38% for inbound,
51% for outbound, and 45% for the combined volume
between November 2004 and November 2005. The dif-
ference between inbound and outbound slightly widened
in the first 6 months. The increase of the inbound traf-
fic in (A2) is attributed to a popular video-streaming
service started in November 2005. The data for non-
RBB customer traffic was obtained only from the four
ISPs; it is difficult for the other ISPs to distinguish ex-
ternal links from other links due to historical reasons.
Since (A2) from these other ISPs is missing, it is not
possible to directly compare (A1) with (A2). Thus, we
estimated the ratio of (Al) to (A) using only data from
the 4 ISPs with both (Al) and (A2). The estimated
ratio (Al)/(A1+A2) is 59% for inbound and 64% for
outbound in November 2005.

Table 1: Average rates of aggregated customer traffic
over 15 months
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Figure 4: Growth of customer traffic: (A1) RBB cus-
tomer and (A2) non-RBB customer
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Figure 5: Growth of external traffic: (B1) 6 major IXes,
(B2) other domestic and (B3) international

domestic traffic (B2), mainly private peering, exceeds
the volume for the six major IXes (B1). From this re-
sult, it would be misleading to simply rely on data from
IXes to estimate and understand nation-wide traffic, be-
cause a considerable amount of traffic is exchanged by
private peering. At the same time, it is possible that the
volume of private peering is larger in our measurement
than the rest of the Japanese ISPs because private peer-
ing is usually exercised only between large ISPs. The
ratio of international traffic to the total external traffic
was 26% for inbound and 30% for outbound in Novem-
ber 2005.

Table 2: Average rates of aggregated external traffic

over 15 months

(Al)customer-RBB (A2)customer-non-RBB
(7 ISPs) (4 ISPs)
inbound  outbound | inbound outbound
2004 Sep 98.1G 111.8G 14.0G 13.6G
Oct 108.3G 124.9G 15.0G 14.9G
Nov 116.0G 133.0G 16.2G 15.6G
2005 May 134.5G 178.3G 23.7G 23.9G
Nov 146.7G 194.2G 36.1G 29.7G

Table 2 summarizes the average rates of aggregated
external traffic, and the growth rates are shown in Fig-
ure 5. It is observed that the total volume of external

(B1)ext-6ix (B2)ext-dom (B3)ext-intl
(7'1SPs) (7 1SPs) (7 1SPs)

in out in out in out
2004 Sep 35.9G 30.9G | 48.2G 37.8G 25.3G 14.1G
Oct 36.3G 31.8G 53.1G 41.6G 27.7G 15.4G
Nov 38.0G 33.0G 55.1G 43.3G 28.5G 16.7G
2005 May | 47.9G 41.6G 73.3G 58.4G | 40.1G 24.1G
Nov 54.0G 48.1G 80.9G 68.1G 57.1G 39.8G

Table 3 shows a relationship between the total cus-
tomer traffic (A) and the total external traffic (B). If we



assume all inbound traffic from other ISPs is destined to
customers, the inbound traffic volume for the total ex-
ternal traffic (B) should be close to the outbound traffic
volume for the total customer traffic (A). Similarly, the
outbound traffic volume (B) should be close to the in-
bound traffic volume (A). These relationships are used
for consistency checking of our measurements. How-
ever, the non-RBB customer data is provided by only 4
ISPs. If we interpolate the missing ISPs in the non-RBB
customer traffic using the ratio from the four reporting
ISPs, the total inbound and outbound customer traffic
for November 2005 is estimated to be 248.4Gbps and
304.4Gbps, respectively. These figures are higher than
those for the total external traffic, and this is probably
because the total customer traffic contains traffic whose
source and destination belong to the same ISP.

Table 3: Average rates of total customer traffic and
total external traffic over 15 months

(A)customer(A14+A2) | (B)external(B14+B2+B3)
inbound outbound inbound outbound
2004 Sep 112.1G 125.4G 109.4G 82.8G
Oct 123.3G 139.8G 117.1G 88.8G
Nov 132.2G 148.6G 121.6G 93.0G
2005 May 158.2G 202.2G 161.3G 124.1G
Nov 182.8G 223.9G 192.0G 156.0G

Last, we examined the relationship between our IX
traffic data (B1) and the total input rate of the six ma-
jor IXes, as obtained directly from these IXes [28]. In
comparison with the published total incoming traffic of
these IXes, our data consistently represent about 41%
of the total traffic as shown in Table 4. If we assume
this ratio to be the traffic share of the seven ISPs, the
total amount of residential broadband traffic in Japan
is roughly estimated to be 353Gbps for inbound and
468Gbps for outbound in November 2005. We are not
aware of available data from other countries against
which to compare these numbers.

Table 4: IX traffic observed from ISPs and from IXes
over 15 months

(Bl)ext-6ix | 6 major IXes | ratio (%)
outbound inbound
2004 Sep 30.9G 74.5G 41.5
Oct 31.8G 77.1G 41.2
Nov 33.0G 80.3G 41.1
2005 May 41.6G 99.1G 42.0
Nov 48.1G 115.9G 41.5

3.2 Customer Traffic

Figure 6 shows the weekly traffic of RBB cus-
tomers, (A1), consisting of DSL/FTTH/CATYV residen-
tial users. For weekly data analysis, we took the av-
erages of the same weekdays in the month. We ex-
cluded holidays from the weekly analysis since their traf-
fic pattern is closer to that of weekends. The residential

broadband customer traffic already exceeds 260Gbps in
evening hours. The inbound and outbound traffic vol-
umes are almost equal, and about 120Gbps is constantly
flowing in both directions, probably due to peer-to-peer
applications which generate traffic independent of daily
user activities. The diurnal pattern indicates that home
user traffic is dominant, i.e., the traffic increases in the
evening, and the peak hours are from 21:00 to 23:00.
Weekends can be identified by larger daytime traffic al-
though the peak rates are close to weekdays. The out-
bound traffic to customers is slightly larger than the in-
bound, even though it is often assumed that home users’
downstream traffic is much larger than upstream. We
believe that peer-to-peer applications contribute signif-
icantly to the upstream traffic.
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Figure 6: Aggregated RBB customer weekly traffic in
November 2005. Darker vertical lines indicate the start
of the day (0:00 am in local-time).

Figure 7 compares the RBB customer inbound traf-
fic in November 2004 and November 2005. The overall
increase appears to be derived from the growth of the
constantly flowing traffic.

Figure 8 shows the weekly traffic of non-RBB cus-
tomers (A2). Since this group also includes leased lines
used to accommodate second or third level ISPs, the
traffic pattern still appears to be dominated by residen-
tial traffic, which is indicated by the peak hours and
the differences between weekdays and weekends. How-
ever, we also observe office hour traffic (from 8:00 to
18:00) in the daytime on weekdays but traditional office
commercial traffic appears to be smaller than residen-
tial customer traffic. The traffic patterns common to
Figure 6 and 8 are different from well-known academic
or business usage patterns in which the peak is found
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Figure 7: Growth of inbound traffic of RBB customers
between November 2004 and November 2005



during office-hours.
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Figure 8: Aggregated non-RBB customer weekly traffic
in November 2005 (from 4 ISPs)

3.3 External Traffic

The external traffic groups are used to understand the
total traffic volume in backbone networks. Figure 9
shows traffic to and from the six major IXes (B1). It
is apparent that the traffic behavior is strongly affected
by residential traffic.
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Figure 9: External weekly traffic to/from the 6 major
IXes in November 2005

Figure 10 shows the external domestic traffic (B2)
including regional IXes, private peering and transit but
not including traffic for the six major IXes. The traffic
pattern is very similar to Figure 9.
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Figure 10: External domestic weekly traffic in Novem-
ber 2005

Figure 11 shows international traffic (B3). The in-
bound traffic is much larger than the outbound, and
the traffic pattern is clearly different from the domestic
traffic. The peak hours are still in the evening, but out-
bound traffic volume fluctuates less than inbound traf-
fic, suggesting that the traditional behavior of Japanese
users downloading content from overseas is still non-
negligible part of international traffic. At the same time,

the constant part is about 70% of the average inbound
rate so that machine-generated traffic could be a large
part of it.
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Figure 11: External international weekly traffic in
November 2005

3.4 Prefectural Traffic

In order to investigate regional differences, i.e., between
metropolitan and rural areas, we collected regional traf-
fic data of the 47 prefectures. Figure 12 illustrates ag-
gregated traffic of one metropolitan prefecture (top) and
of one rural prefecture (bottom). Both graphs exhibit
similar temporal patterns such as peak positions and
weekday /weekend behavior. In addition, about 70% of
the average traffic is constant regardless of the traffic
volume. These characteristics are common to other pre-
fectures. One noticeable difference is that metropolitan
prefectures experience larger volumes of office hour traf-
fic, probably due to larger business usage.
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Figure 12: Example prefectural traffic: a metropolitan
prefecture (top) and a rural prefecture (bottom)

We found that a prefecture’s traffic is roughly propor-
tional to the population of the prefecture. The result
indicates that there is no clear regional concentration of
heavy-hitters of the Internet. That is, the probability of
finding a heavy-hitter in a given population is constant.

In order to analyze the scaling property of traffic vol-
ume, we show the (complementary) cumulative distri-
bution of prefectural traffic on a log-log scale in Figure



13. The plot conforms to a power law distribution with
a cutoff point at 700Mbps, meaning that there is no
typical size of prefectural traffic volume. It is also ob-
served that the plots for the top 5 largest prefectures
deviate from the power law. To investigate this power
law decay, we show the cumulative distribution of pre-
fectural population in the sub-panel. The plots reveal
that the power law decay appearing in the traffic vol-
ume is derived from the power law decay of prefectural
population, as can be inferred from the linear relation-
ship between traffic and population. Thus, we can con-
clude that the probability of finding a heavy-hitter in a
given population is constant and the distribution of ag-
gregated traffic volume directly depends on the popula-
tion. A possible reason is fairly universal access services
in Japan; 100Mbps fiber access is available in most city
areas.
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Figure 13: Cumulative distribution of prefectural traf-
fic. Sub-panel shows the cumulative distribution of pop-
ulation for comparison.

4 Analysis of per-customer traf-
fic

This section analyzes NetFlow data from one of the
ISPs. Although the data sets are from only one ISP,
the traffic characteristics appear to be consistent with
the aggregated results in the previous section so that
the results are likely to represent Japanese residential
traffic.

The number of unique active users observed in the
February data set is shown in Table 5. As we ex-
plain later, users are classified into two groups by av-
erage daily inbound traffic usage, one of more than 2.5
GB/day and the other of less than 2.5GB/day. The
total number of active users of DSL is slightly higher
than fiber, but there are more heavy-hitters among fiber
users.

Table 5: Ratio of fiber and DSL active users in the
February 2005 data set

ratio (%) | > 2.5GB/day (%) | < 2.5GB/day (%)
total 100 4.46 95.54
fiber 46.4 3.66 42.79
DSL 53.6 0.80 52.75

4.1 Distribution of Heavy-hitters

Figure 14 shows the cumulative distribution of the total
traffic volume of heavy-hitters in decreasing order of
volume. The distribution is computed independently
for inbound and outbound traffic. The graph reveals a
skewed traffic distribution among users; the top N% of
heavy-hitters use X% of the total traffic. For example,
the top 4% use 75% of the total inbound traffic, and
60% of the outbound. In other words, a small group
of heavy-hitters represent a significant part of the total
traffic.
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Figure 14: Cumulative distribution of traffic volume of
heavy-hitters in decreasing order of volume

Figure 15 shows the (complementary) cumulative dis-
tribution of daily traffic per user on a log-log scale, and
compares the total users (top) with the fiber users (mid-
dle) and the DSL users (bottom). The daily traffic vol-
ume is the average of the month, and the distribution
is computed independently for inbound and outbound
traffic.

The distributions follow power law but there is a knee
in the slope, at the top 4% of heavy-hitters using more
than 2.5GB/day (or 230kbits/sec) for the total users,
and at the top 10% using more than 2.5GB/day for the
fiber users. It is less clear for the DSL users, but a
knee can be seen at around the top 2% using more than
2.5GB/day. The distribution also shows that outbound
traffic is larger for the majority of the users on the left
side of the knee but it does not hold for heavy-hitters
on the right side of the knee.

The distribution has a different slope for those who
upload more than 2.5GB/day so we use this figure to
statistically distinguish heavy-hitters from the rest of
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Figure 15: Cumulative distribution of daily traffic per
user: total users (top), fiber users (middle) and DSL
users (bottom). The lines are drawn at 2.5GB/day and
the top 4% heavy-hitters, the knee of the total users’
slope.

the users. In the rest of the paper, the heavy-hitter
group is used to denote users uploading more than
2.5GB/day on average, and the normal user group is
used for users uploading less than 2.5GB/day on aver-
age. The normal user group should be interpreted as
users other than the most influential heavy-hitters.

Note that the difference is only in the slope of the
distribution, and the boundary between the two groups
is not clear. In other words, users are distributed statis-
tically over a wide traffic volume range, even up to the
most extreme heavy-hitters. There is no typical daily
traffic volume per user that can be identified by a con-
cave in the slope.

As for prefectural differences, the distributions look
similar across different prefectures as shown in Figure 16
which compares one metropolitan prefecture (top) with
one rural prefecture (bottom). One difference is the
tail length affected by the number of users. Another
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Figure 16: Cumulative distribution of daily traffic per
user: a metropolitan prefecture (top) and a rural pre-
fecture (bottom)

difference is that the distribution of the metropolitan
prefecture is closer to that of the total users, and the
distribution of the rural prefecture is closer to that of
the DSL users. The results indicate that the distribu-
tion of heavy-hitters is similar across different regions
with slight differences in the ratio of heavy-hitter pop-
ulation which in turn affected by the ratio of fiber users
including larger heavy-hitter population.

4.2 Correlation of Inbound and Out-
bound Volumes

The correlation between inbound and outbound traffic
volumes for each user is shown as log-log scatter plots
in Figure 17. These plots are taken from a metropolitan
prefecture but the characteristics are common to all the
prefectures.

There is a positive correlation as expected, and the
highest density cluster is below and parallel to the unity
line where the volume of outbound (downstreaming for
users) is about ten times larger than that of inbound.
In a higher volume region, a different cluster appears
to exist around the unity line. The slope of the cluster
seems to be slightly larger than 1, which explains the
inversion of inbound and outbound traffic volumes in
Figure 15. It can be also observed that, across the entire
traffic volume range, the inbound/outbound traffic ratio
varies greatly, up to 4 orders of magnitude.

Both fiber and DSL plots show similar distributions
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Figure 17: Correlation of inbound and outbound traffic

volumes per user in one metropolitan prefecture: fiber
(top) and DSL (bottom)

but, as expected, the high-volume cluster is larger in
the fiber plot, especially above the unity line. A plausi-
ble interpretation of excess upstream traffic of the fiber
heavy-hitters is that available bandwidth in fiber access
allows them to compensate for the shortage of upstream
bandwidth of DSL lines. It is also noticeable that there
are much more low-volume users in the DSL plot.

However, the boundary of the two clusters is not very
clear. There seems to be no clear qualitative difference
in the behaviors of fiber and DSL users except the per-
centage of heavy-hitters.

4.3 Temporal Behavior

Figure 18 and Figure 19 compare the temporal behav-
iors of the fiber users and the DSL users. The volume
is normalized to the peak value of the total traffic size
so as to not reveal the traffic volume of the ISP.

The plots show that the inbound and outbound vol-
umes are almost equal for fiber traffic but the inbound
is about 60% larger for heavy-hitters and the outbound
is about 166% larger for the normal users. The total is
counterbalanced by the two groups. In the DSL users,
the outbound volume is about 83% larger for the to-
tal users, only about 11% larger for the heavy-hitters
and about 180% larger for the normal users. The total
reflects the offset of the normal users.

The inbound traffic of the fiber heavy-hitters is much
larger than the outbound traffic, and has large daily
fluctuations. On the other hand, the inbound traffic of

DSL heavy-hitters is saturated. As a result, the fiber
traffic accounts for 86% of the total inbound volume and
80% of the total residential volume, and the behavior of
the total traffic is heavily influenced by the fiber heavy-
hitters.
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heavy-hitters (middle) and normal users (bottom)

Figure 20 compares the temporal change in the num-
ber of active users in fiber and DSL. Again, the active



user numbers are normalized to the peak value of the
total active users. The number of active users is fairly
constant for the heavy-hitters, especially for DSL. The
constant portion seems to be users running automated
data-transfer software. When the active user number is
compared to the traffic volume, the increase is larger in
the morning and smaller in the evening. This behavior
suggests that bandwidth use is more intense, i.e., higher
bandwidth demand per user, in the evening.
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Figure 20: Normarized number of active users in fiber
(top) and DSL (bottom): total fiber active users, heavy-
hitters and normal users

4.4 Protocol and Port Usage

Table 6 shows the ranking of protocols and ports. To
rank port numbers in TCP and UCP, we took the
smaller of the source and destination ports for a flow.
TCP ports are further divided into well-known ports
that are smaller than 1024, and dynamic ports that are
equal to or larger than 1024. We do not distinguish reg-
istered ports from dynamic ports since many implemen-
tations use the registered port range from 1024 through
49151 for dynamic ports.

Port 80 (http) accounts only for 9% of the total traf-
fic. TCP dynamic ports account for 83% but the usage
of each port is small, probably because the most popu-
lar peer-to-peer file-sharing software in Japan, WINNY
[11], uses arbitrary ports. The largest one, port 6699, is
only 1.4%. It is evident that it is no longer possible to
make use of port numbers for identifying applications.

4.5 Traffic Matrices

To investigate geographic communication patterns
among residential users, we classify traffic using the
geo-IP databases. Table 7 shows the traffic matrix
among residential users (RBB), domestic data-centers
and leased-lines (DOM), and international addresses
(INTL). Residential user-to-user traffic accounts for
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Table 6: Protocol breakdown: TCP dynamic ports ac-
count for 83% of the total traffic

protocol ratio(%) [ port # name ratio(%)
TCP 97.43

(port < 1024 13.99) 80  http 9.32

20 ftp-data 0.93

554 rtsp 0.38

443  https 0.30

110  pop3 0.17

81 - 0.15

25 smtp 0.14

119 nntp 0.13

21 ftp 0.11

22 ssh 0.09

- others 2.27

(port >= 1024 83.44) 6699  winmx 1.40

6346 gnutella 0.92

7743 winny 0.48

6881 bittorrent 0.25

6348 gnutella 0.21

1935 macromedia-fsc 0.20

1755 ms-streaming 0.20

2265 - 0.13

1234 - 0.12

4662 edonkey 0.12

8080 http-proxy 0.11

- others 79.30

UDP 1.38 6346  gnutella 0.39

6257 winmx- 0.06

- others 0.93
ESP 1.09
GRE 0.07
ICMP 0.01
OTHERS 0.02

62% of the total residential traffic. This is a conserva-
tive estimate since the international group also includes
residential users.

A surprisingly large portion, about 90%, is domes-
tic communication where both ends are either domes-
tic residential users or other domestic addresses. One
possible explanation is language and cultural barriers;
the majority of content is in the Japanese language
and/or is popular only with Japanese. However, there
are many Japanese worldwide who want Japanese con-
tent, and Japanese content such as animation is popular
with non-Japanese as well. Another plausible explana-
tion is that domestic fiber users are connected so well
in terms of bandwidth and latency that super-nodes in
peer-to-peer networks are interconnected mainly among
domestic heavy-hitters.

A small degree of mis-classification is found in the ta-
ble; 1.5% among DOM and INTL. Since the data are
taken from residential traffic, and non-residential flow
entries, e.g., management flows for routers, were filtered
by the ISP in advance, the traffic not including RBB
should be zero. The disparity is caused by new residen-
tial address blocks not listed in the geo-IP database.
Although it was possible to fix the database using the
information from the ISP, we did not do so since errors
of the same kind are expected in address blocks of other
ISPs with a similar error rate of 1.5%.

To show the geographic distribution of domestic user-
to-user traffic, the prefectural traffic matrix is shown



Table 7: Traffic matrix of the July data set

src\dst ALL RBB DOM INTL
ALL 100.0 84.8 11.1 4.1
RBB 77.0 62.2 9.8 3.9
DOM 18.0 16.7 1.1 0.2
INTL 5.0 4.8 0.2 0.0

in Figure 21 in which the prefectures are ordered by
geographic locations. In order to observe differences
among prefectures, the traffic volumes are normalized
to the source prefecture so that the sum of the rows
becomes 100%.

Most traffic flows to several prefectures with large
populations and all the rows have similar distributions,
which again confirms that the traffic volume is roughly
proportional to the population. The traffic local to the
prefecture is on the diagonal line from the upper left
to the bottom right, and is only 2-3% of the total vol-
ume for all the prefectures. On the other hand, we
cannot identify any increase in traffic to neighbor pre-
fectures. A similar result was found when the distribu-
tion is normalized to the destination prefecture. The
results suggest that Internet traffic has very poor lo-
cality, in contrast to telephone communication where
users tend to talk to nearby neighbors. However, this
phenomenon might just be the behavior of dominant
applications rather than the fundamental nature of In-
ternet communications.

Figure 22 shows the temporal behavior of the traffic
matrix. For heavy-hitters, a large part of the traffic is
user-to-user. There are some daily fluctuations even in
user-to-user traffic in the heavy-hitter group. It might
be that a certain part of heavy-hitter traffic is still trig-
gered manually or it could be triggered by non-heavy
hitters manually accessing heavy-hitters.

In order to distinguish application types in user-to-
user traffic, we investigated the number of peers for each
user. Before the experiment, we expected to observe two
application types: a small number of peers for video-
streaming and downloading from servers, and a large
number of peers for peer-to-peer file-sharing.

To observe the number of peers by unique IP address,
it is necessary to exclude peers with small traffic vol-
umes since the tail of the distribution is long. Thus,
each user’s peers are sorted inversely by volume, and
then, the number of peers exceeding the 50th-percentile
of the user’s traffic volume is counted, independently
for inbound and outbound. To observe differences in
peer types, peers are classified into 4 groups by the geo-
IP databases: residential users, domestic, international
and ¢nwvalid, and then, each user is marked by the largest
group. The data were taken from one day of traffic on
July 5th 2005, and those users who used more than 1GB
were extracted for analysis.

Figure 23 shows the (complementary) cumulative dis-
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tribution of number of peers for four groups. The distri-
butions have heavy tails, and even the domestic groups
include many file-sharing users who are in organizations
connected by leased-lines. The two application types we
expected are discernible in the distributions only by the
slight difference in the slope for more than 10 peers.
The inbound-to-users group is, however, different from
the others, especially in the upper-left region; the ma-
jority of the users have only a few peers. The results
show that there is no clear boundary between stream-
ing/downloading and file-sharing, and that there is no
typical number of peers.

The corresponding log-log scatter in Figure 24 show
the correlation between the peer numbers and the traf-
fic volumes. There are a surprisingly wide range of peer
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that the distributions of destinations are similar among different prefectures.

numbers regardless of the traffic volume; some users
communicate with more than 1000 peers. A large num-
ber of users communicate with only one or a few peers
even in the high-volume region but similarly many users
communicate with 10-100 peers. The positive correla-
tion means that the number of peers is proportional to
the traffic volume. If file-sharing applications have a
typical transfer size for each peer, we should be able to
observe positive correlation. Although a positive corre-
lation can be observed, it spans a wide range of traffic
volumes. In addition, the extremely heavy-hitters with
few peers do not follow the correlation. This suggests
that high-volume traffic is generated not only by peer-
to-peer file-sharing but also by other applications such
as content-downloading from a single server. A plausi-
ble explanation for the large variance is that the major-
ity of users use both file-sharing and downloading with
different ratios.

5 Related Work

The impact of residential broadband traffic can be seen
not only in volume but also in usage patterns. The
peak hours have shifted from office to evening hours,
and emerging file-sharing or other peer-to-peer com-
munications with audio/video content exhibits behav-
ior considerably different from traditional world wide
web that was the dominant application in earlier traffic
measurement studies [24, 4, 15].

There is little solid work in literature that tries to
estimate the growth rate of Internet traffic. Odlyzko
analyzes various aspects of the traffic growth, and re-
ports the growth rate of 100% per year in the U.S. in
2003 [18].

Our results are consistent with earlier measurements
of peer-to-peer traffic [6, 7, 22, 3]: peer-to-peer traf-
fic is dominant in commercial backbones [23, 21], and
highly variable and skewed among participating nodes
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[25, 26]. However, measurment techniques relying on
known port numbers to identify peer-to-peer applica-
tions can no longer be applied since peer-to-peer traffic
is shifting from known to arbitrary ports [12].

Among various peer-to-peer measurements, a study
of France Telecom’s ADSL networks [21] is similar to
our per-customer analysis in monitoring access lines and
comparing traffic volumes among data sets over a year.
However, their focus is on file-sharing applications and
the monitoring method relies on known port numbers.
The results are considerably different from ours, proba-
bly due to the fiber user ratio and differences in popular
applications in our measurement.

Many studies report the asymmetric nature of peer-
to-peer traffic [26, 25, 21]. From our comparison be-
tween fiber and DSL users, it is clear that the band-
width demands of applications and users are not asym-



metric, and the deployment of symmetric access lines
will change traffic patterns in other countries.

It is known that, in general, peer-to-peer traffic has
very poor geographic locality [14, 13]. The intersec-
tion between query sets across different regions is also
very small [14] partly due to language and cultural bar-
riers [8, 21]. However, modern peer-to-peer networks
are characterized by small-world (i.e., small diameter
and highly clustered network) [27], which could lead to
heterogeneous behavior in different geographic regions
[14]. Our result of poor locality in user-to-user traffic
is consistent with others, though the granularity of the
analysis is only at the prefectural level.

This paper focuses on user-to-user traffic rather than
peer-to-peer file-sharing. Owur results show that file-
sharing is not the only dominant application in user-to-
user traffic. Our work is, to the best of our knowledge,
the first involving the collection of long-term measure-
ments from multiple ISPs to estimate nation-wide traffic
volume, and the first investigating user-to-user traffic in
both fiber and DSL access lines.

6 Implications

It has been reported worldwide that peer-to-peer traf-
fic is taking up a significant portion of backbone net-
works. Our aggregated measurements indeed show that
the backbone traffic is heavily impacted by residential
customer traffic which accounts for about 60% of the
total customer traffic. Residential customer traffic in-
creased rapidly — 45% between November 2004 and
November 2005.

The properties of residential broadband traffic differ
considerably from those of academic or office traffic of-
ten seen in literature. The constantly flowing portion
of daily traffic fluctuations is about 70%, much larger
than those found in earlier reports [2, 5]. Research re-
sults obtained from campus or other academic networks
may no longer apply to commercial traffic.

The inbound and outbound rates are roughly equal
throughout our data sets. Many access technologies em-
ploy asymmetric line speed for inbound and outbound
based on the assumption that content-downloading is
dominant for normal users. However, this assumption
does not hold in our measurements.

Our measurements also suggest that a large amount
of traffic is exchanged by private peering which implies
that data from IXes may not be an appropriate index
of nation-wide traffic volume.

The prefectural results show that traffic volume is
roughly proportional to regional population, and the
distribution of customer traffic usage reflects the ratio
of fiber and DSL populations. If this is the case, it
would affect the design of capacity planning for back-
bone networks.
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Our per-customer measurements reveal the behavior
of residential traffic in depth. At first, we noticed a
large skew in traffic usage: the top 4% of heavy-hitters
account for 75% and 60% of inbound and outbound traf-
fic, respectively. Fiber traffic accounts for 86% and 75%
of inbound and outbound traffic, respectively. We tend
to attribute the skews to the divide between a handful
of heavy-hitters and the rest of the users. Our in-depth
analysis, however, shows the existence of diverse and
widespread heavy-hitters who appear to be casual users
rather than more dedicated users. In addition, the to-
tal traffic behavior seems to reflect the balance of the
diversity.

For example, the large skew in per-customer traffic
seems to be caused by a small number of heavy-hitters
but, in fact, the distribution of per-customer traffic fol-
lows a power law and it is difficult to draw a line between
heavy-hitters and the rest of the users. The large skew
in traffic volume between fiber and DSL is not caused
by qualitative differences in the behaviors of fiber and
DSL customers but simply by the larger percentage of
heavy-hitters among fiber users. The large skew of user-
to-user traffic in residential traffic seemingly points to
peer-to-peer file-sharing but it is apparently a mixture
of file-sharing and content-downloading. All the results
indicate that the perceived divides are actually caused
by diversity. At the same time, the entire behavior re-
flects the balance of this diversity, but it is sometimes
dictated by the most influential group.

We can no longer view heavy-hitters as exceptional
extremes since there are too many of them, and they
are statistically distributed over a wide range. It is more
natural to think they are casual users who start play-
ing with new applications such as video-downloading
and peer-to-peer file-sharing, become heavy-hitters, and
eventually shift from DSL to fiber. Or, sometimes users
subscribe to fiber first, and then, look for applications to
use the abundant bandwidth. The implication is that, if
a new attractive application emerges, a drastic change
could occur in traffic usage. For example, current peer-
to-peer applications do not take locality into considera-
tion, but future applications could as suggested in [13].

As for the generality of our measurements, several as-
pects are specific to Japanese traffic. One is the high
penetration of fiber access. It seems to take some time
for other countries to deploy fiber access; even Korea
that has the highest broadband penetration ratio does
not have widespread fiber access [16]. Japan is a model
of widespread symmetric residential broadband access.
Another is fairly closed domestic traffic. The current
situation is partly due to language and cultural bar-
riers and partly due to rich connectivity within the
country. The former could be common to other non-
English speaking countries to some extent, and the lat-
ter can be seen simply as the geographic concentration



of bandwidth-rich users.

7 Conclusion

The widespread deployment of residential broadband
access has tremendous implications on our lives. Al-
though its effects on the Internet infrastructure are dif-
ficult to predict, it is essential for researchers and in-
dustry to prepare to accommodate innovations brought
by empowered end users. Extensive effort to estab-
lish protected data sharing mechanisms with commer-
cial Japanese Internet backbone providers has allowed
us to achieve an unprecedented empirical analysis of a
significant segment of the Japanese residential broad-
band traffic.

The growth of residential broadband traffic has al-
ready contributed to a significant increase in commer-
cial backbone traffic. In our study, residential broad-
band traffic accounts for two thirds of the ISP back-
bone traffic, which will force significant reevaluation of
the pricing and cost structures of the ISP industry.

We have further studied residential per-customer traf-
fic in one of the ISPs, and investigated differences be-
tween DSL and fiber users, heavy-hitters and normal
users, and in geographic traffic matrices. We found that
a small segment of users dictates the overall behavior;
4% of heavy-hitters account for 75% of the inbound vol-
ume. The fiber users account for 86% of the inbound
volume. About 62% of the residential traffic volume is
user-to-user traffic that exhibits impressively diverse be-
haviors. The distribution of heavy-hitters follows power
law without a clear boundary between heavy-hitters and
normal users.

For future work, we will continue collecting aggre-
gated traffic logs from participating ISPs. We are also
planning to do per-customer traffic analysis from other
ISPs, and hope to compare our results with measure-
ments from non-Japanese ISPs.
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